This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of the monoid of endofunctions on class A is the set of functions from A into itself. (Contributed by AV, 29-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efmndbas.g | |- G = ( EndoFMnd ` A ) |
|
| efmndbas.b | |- B = ( Base ` G ) |
||
| Assertion | efmndbasabf | |- B = { f | f : A --> A } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efmndbas.g | |- G = ( EndoFMnd ` A ) |
|
| 2 | efmndbas.b | |- B = ( Base ` G ) |
|
| 3 | 1 2 | efmndbas | |- B = ( A ^m A ) |
| 4 | mapvalg | |- ( ( A e. _V /\ A e. _V ) -> ( A ^m A ) = { f | f : A --> A } ) |
|
| 5 | 4 | anidms | |- ( A e. _V -> ( A ^m A ) = { f | f : A --> A } ) |
| 6 | 3 5 | eqtrid | |- ( A e. _V -> B = { f | f : A --> A } ) |
| 7 | base0 | |- (/) = ( Base ` (/) ) |
|
| 8 | 7 | eqcomi | |- ( Base ` (/) ) = (/) |
| 9 | fvprc | |- ( -. A e. _V -> ( EndoFMnd ` A ) = (/) ) |
|
| 10 | 1 9 | eqtrid | |- ( -. A e. _V -> G = (/) ) |
| 11 | 10 | fveq2d | |- ( -. A e. _V -> ( Base ` G ) = ( Base ` (/) ) ) |
| 12 | 2 11 | eqtrid | |- ( -. A e. _V -> B = ( Base ` (/) ) ) |
| 13 | mapprc | |- ( -. A e. _V -> { f | f : A --> A } = (/) ) |
|
| 14 | 8 12 13 | 3eqtr4a | |- ( -. A e. _V -> B = { f | f : A --> A } ) |
| 15 | 6 14 | pm2.61i | |- B = { f | f : A --> A } |