This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC ALGEBRAIC STRUCTURES
Monoids
Free monoids
Monoid of endofunctions
efmndbas0
Metamath Proof Explorer
Description: The base set of the monoid of endofunctions on the empty set is the
singleton containing the empty set. (Contributed by AV , 27-Jan-2024)
(Proof shortened by AV , 31-Mar-2024)
Ref
Expression
Assertion
efmndbas0
⊢ Base EndoFMnd ⁡ ∅ = ∅
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢ EndoFMnd ⁡ ∅ = EndoFMnd ⁡ ∅
2
eqid
⊢ Base EndoFMnd ⁡ ∅ = Base EndoFMnd ⁡ ∅
3
1 2
efmndbas
⊢ Base EndoFMnd ⁡ ∅ = ∅ ∅
4
0map0sn0
⊢ ∅ ∅ = ∅
5
3 4
eqtri
⊢ Base EndoFMnd ⁡ ∅ = ∅