This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Euler's identity. (Contributed by Paul Chapman, 23-Jan-2008) (Revised by Mario Carneiro, 9-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eulerid | ⊢ ( ( exp ‘ ( i · π ) ) + 1 ) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efipi | ⊢ ( exp ‘ ( i · π ) ) = - 1 | |
| 2 | 1 | oveq1i | ⊢ ( ( exp ‘ ( i · π ) ) + 1 ) = ( - 1 + 1 ) |
| 3 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 4 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 5 | 1pneg1e0 | ⊢ ( 1 + - 1 ) = 0 | |
| 6 | 3 4 5 | addcomli | ⊢ ( - 1 + 1 ) = 0 |
| 7 | 2 6 | eqtri | ⊢ ( ( exp ‘ ( i · π ) ) + 1 ) = 0 |