This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute existential quantifiers. (Contributed by NM, 8-Aug-1994) Avoid ax-10 . (Revised by GG, 21-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eeor.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| eeor.2 | ⊢ Ⅎ 𝑥 𝜓 | ||
| Assertion | eeor | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝜑 ∨ 𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∨ ∃ 𝑦 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eeor.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | eeor.2 | ⊢ Ⅎ 𝑥 𝜓 | |
| 3 | 19.43 | ⊢ ( ∃ 𝑦 ( 𝜑 ∨ 𝜓 ) ↔ ( ∃ 𝑦 𝜑 ∨ ∃ 𝑦 𝜓 ) ) | |
| 4 | 3 | exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝜑 ∨ 𝜓 ) ↔ ∃ 𝑥 ( ∃ 𝑦 𝜑 ∨ ∃ 𝑦 𝜓 ) ) |
| 5 | 19.43 | ⊢ ( ∃ 𝑥 ( ∃ 𝑦 𝜑 ∨ ∃ 𝑦 𝜓 ) ↔ ( ∃ 𝑥 ∃ 𝑦 𝜑 ∨ ∃ 𝑥 ∃ 𝑦 𝜓 ) ) | |
| 6 | 1 | 19.9 | ⊢ ( ∃ 𝑦 𝜑 ↔ 𝜑 ) |
| 7 | 6 | exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑥 𝜑 ) |
| 8 | excom | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜓 ↔ ∃ 𝑦 ∃ 𝑥 𝜓 ) | |
| 9 | 2 | 19.9 | ⊢ ( ∃ 𝑥 𝜓 ↔ 𝜓 ) |
| 10 | 9 | exbii | ⊢ ( ∃ 𝑦 ∃ 𝑥 𝜓 ↔ ∃ 𝑦 𝜓 ) |
| 11 | 8 10 | bitri | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜓 ↔ ∃ 𝑦 𝜓 ) |
| 12 | 7 11 | orbi12i | ⊢ ( ( ∃ 𝑥 ∃ 𝑦 𝜑 ∨ ∃ 𝑥 ∃ 𝑦 𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∨ ∃ 𝑦 𝜓 ) ) |
| 13 | 5 12 | bitri | ⊢ ( ∃ 𝑥 ( ∃ 𝑦 𝜑 ∨ ∃ 𝑦 𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∨ ∃ 𝑦 𝜓 ) ) |
| 14 | 4 13 | bitri | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝜑 ∨ 𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∨ ∃ 𝑦 𝜓 ) ) |