This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute existential quantifiers. (Contributed by NM, 8-Aug-1994) Avoid ax-10 . (Revised by GG, 21-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eeor.1 | |- F/ y ph |
|
| eeor.2 | |- F/ x ps |
||
| Assertion | eeor | |- ( E. x E. y ( ph \/ ps ) <-> ( E. x ph \/ E. y ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eeor.1 | |- F/ y ph |
|
| 2 | eeor.2 | |- F/ x ps |
|
| 3 | 19.43 | |- ( E. y ( ph \/ ps ) <-> ( E. y ph \/ E. y ps ) ) |
|
| 4 | 3 | exbii | |- ( E. x E. y ( ph \/ ps ) <-> E. x ( E. y ph \/ E. y ps ) ) |
| 5 | 19.43 | |- ( E. x ( E. y ph \/ E. y ps ) <-> ( E. x E. y ph \/ E. x E. y ps ) ) |
|
| 6 | 1 | 19.9 | |- ( E. y ph <-> ph ) |
| 7 | 6 | exbii | |- ( E. x E. y ph <-> E. x ph ) |
| 8 | excom | |- ( E. x E. y ps <-> E. y E. x ps ) |
|
| 9 | 2 | 19.9 | |- ( E. x ps <-> ps ) |
| 10 | 9 | exbii | |- ( E. y E. x ps <-> E. y ps ) |
| 11 | 8 10 | bitri | |- ( E. x E. y ps <-> E. y ps ) |
| 12 | 7 11 | orbi12i | |- ( ( E. x E. y ph \/ E. x E. y ps ) <-> ( E. x ph \/ E. y ps ) ) |
| 13 | 5 12 | bitri | |- ( E. x ( E. y ph \/ E. y ps ) <-> ( E. x ph \/ E. y ps ) ) |
| 14 | 4 13 | bitri | |- ( E. x E. y ( ph \/ ps ) <-> ( E. x ph \/ E. y ps ) ) |