This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eelT11.1 | |- ( T. -> ph ) |
|
| eelT11.2 | |- ( ps -> ch ) |
||
| eelT11.3 | |- ( ps -> th ) |
||
| eelT11.4 | |- ( ( ph /\ ch /\ th ) -> ta ) |
||
| Assertion | eelT11 | |- ( ps -> ta ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eelT11.1 | |- ( T. -> ph ) |
|
| 2 | eelT11.2 | |- ( ps -> ch ) |
|
| 3 | eelT11.3 | |- ( ps -> th ) |
|
| 4 | eelT11.4 | |- ( ( ph /\ ch /\ th ) -> ta ) |
|
| 5 | 3anass | |- ( ( T. /\ ps /\ ps ) <-> ( T. /\ ( ps /\ ps ) ) ) |
|
| 6 | truan | |- ( ( T. /\ ( ps /\ ps ) ) <-> ( ps /\ ps ) ) |
|
| 7 | anidm | |- ( ( ps /\ ps ) <-> ps ) |
|
| 8 | 5 6 7 | 3bitri | |- ( ( T. /\ ps /\ ps ) <-> ps ) |
| 9 | 1 4 | syl3an1 | |- ( ( T. /\ ch /\ th ) -> ta ) |
| 10 | 2 9 | syl3an2 | |- ( ( T. /\ ps /\ th ) -> ta ) |
| 11 | 3 10 | syl3an3 | |- ( ( T. /\ ps /\ ps ) -> ta ) |
| 12 | 8 11 | sylbir | |- ( ps -> ta ) |