This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eelT00.1 | ⊢ ( ⊤ → 𝜑 ) | |
| eelT00.2 | ⊢ 𝜓 | ||
| eelT00.3 | ⊢ 𝜒 | ||
| eelT00.4 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) | ||
| Assertion | eelT00 | ⊢ 𝜃 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eelT00.1 | ⊢ ( ⊤ → 𝜑 ) | |
| 2 | eelT00.2 | ⊢ 𝜓 | |
| 3 | eelT00.3 | ⊢ 𝜒 | |
| 4 | eelT00.4 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) | |
| 5 | 3anass | ⊢ ( ( ⊤ ∧ 𝜓 ∧ 𝜒 ) ↔ ( ⊤ ∧ ( 𝜓 ∧ 𝜒 ) ) ) | |
| 6 | truan | ⊢ ( ( ⊤ ∧ ( 𝜓 ∧ 𝜒 ) ) ↔ ( 𝜓 ∧ 𝜒 ) ) | |
| 7 | 5 6 | bitri | ⊢ ( ( ⊤ ∧ 𝜓 ∧ 𝜒 ) ↔ ( 𝜓 ∧ 𝜒 ) ) |
| 8 | 1 4 | syl3an1 | ⊢ ( ( ⊤ ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) |
| 9 | 7 8 | sylbir | ⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) |
| 10 | 2 9 | mpan | ⊢ ( 𝜒 → 𝜃 ) |
| 11 | 3 10 | ax-mp | ⊢ 𝜃 |