This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eel12131.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| eel12131.2 | ⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 ) | ||
| eel12131.3 | ⊢ ( ( 𝜑 ∧ 𝜏 ) → 𝜂 ) | ||
| eel12131.4 | ⊢ ( ( 𝜓 ∧ 𝜃 ∧ 𝜂 ) → 𝜁 ) | ||
| Assertion | eel12131 | ⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) → 𝜁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eel12131.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| 2 | eel12131.2 | ⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 ) | |
| 3 | eel12131.3 | ⊢ ( ( 𝜑 ∧ 𝜏 ) → 𝜂 ) | |
| 4 | eel12131.4 | ⊢ ( ( 𝜓 ∧ 𝜃 ∧ 𝜂 ) → 𝜁 ) | |
| 5 | 4 | 3exp | ⊢ ( 𝜓 → ( 𝜃 → ( 𝜂 → 𝜁 ) ) ) |
| 6 | 1 2 5 | syl2imc | ⊢ ( ( 𝜑 ∧ 𝜒 ) → ( 𝜑 → ( 𝜂 → 𝜁 ) ) ) |
| 7 | 6 | ex | ⊢ ( 𝜑 → ( 𝜒 → ( 𝜑 → ( 𝜂 → 𝜁 ) ) ) ) |
| 8 | 7 | pm2.43b | ⊢ ( 𝜒 → ( 𝜑 → ( 𝜂 → 𝜁 ) ) ) |
| 9 | 8 | com13 | ⊢ ( 𝜂 → ( 𝜑 → ( 𝜒 → 𝜁 ) ) ) |
| 10 | 3 9 | syl | ⊢ ( ( 𝜑 ∧ 𝜏 ) → ( 𝜑 → ( 𝜒 → 𝜁 ) ) ) |
| 11 | 10 | ex | ⊢ ( 𝜑 → ( 𝜏 → ( 𝜑 → ( 𝜒 → 𝜁 ) ) ) ) |
| 12 | 11 | pm2.43b | ⊢ ( 𝜏 → ( 𝜑 → ( 𝜒 → 𝜁 ) ) ) |
| 13 | 12 | 3imp231 | ⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) → 𝜁 ) |