This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eel12131.1 | |- ( ph -> ps ) |
|
| eel12131.2 | |- ( ( ph /\ ch ) -> th ) |
||
| eel12131.3 | |- ( ( ph /\ ta ) -> et ) |
||
| eel12131.4 | |- ( ( ps /\ th /\ et ) -> ze ) |
||
| Assertion | eel12131 | |- ( ( ph /\ ch /\ ta ) -> ze ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eel12131.1 | |- ( ph -> ps ) |
|
| 2 | eel12131.2 | |- ( ( ph /\ ch ) -> th ) |
|
| 3 | eel12131.3 | |- ( ( ph /\ ta ) -> et ) |
|
| 4 | eel12131.4 | |- ( ( ps /\ th /\ et ) -> ze ) |
|
| 5 | 4 | 3exp | |- ( ps -> ( th -> ( et -> ze ) ) ) |
| 6 | 1 2 5 | syl2imc | |- ( ( ph /\ ch ) -> ( ph -> ( et -> ze ) ) ) |
| 7 | 6 | ex | |- ( ph -> ( ch -> ( ph -> ( et -> ze ) ) ) ) |
| 8 | 7 | pm2.43b | |- ( ch -> ( ph -> ( et -> ze ) ) ) |
| 9 | 8 | com13 | |- ( et -> ( ph -> ( ch -> ze ) ) ) |
| 10 | 3 9 | syl | |- ( ( ph /\ ta ) -> ( ph -> ( ch -> ze ) ) ) |
| 11 | 10 | ex | |- ( ph -> ( ta -> ( ph -> ( ch -> ze ) ) ) ) |
| 12 | 11 | pm2.43b | |- ( ta -> ( ph -> ( ch -> ze ) ) ) |
| 13 | 12 | 3imp231 | |- ( ( ph /\ ch /\ ta ) -> ze ) |