This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: syl2an with antecedents in standard conjunction form. (Contributed by Alan Sare, 26-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eel2131.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) | |
| eel2131.2 | ⊢ ( ( 𝜑 ∧ 𝜃 ) → 𝜏 ) | ||
| eel2131.3 | ⊢ ( ( 𝜒 ∧ 𝜏 ) → 𝜂 ) | ||
| Assertion | eel2131 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜃 ) → 𝜂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eel2131.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) | |
| 2 | eel2131.2 | ⊢ ( ( 𝜑 ∧ 𝜃 ) → 𝜏 ) | |
| 3 | eel2131.3 | ⊢ ( ( 𝜒 ∧ 𝜏 ) → 𝜂 ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜑 ∧ 𝜃 ) ) → 𝜂 ) |
| 5 | 4 | 3impdi | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜃 ) → 𝜂 ) |