This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute three existential quantifiers over a conjunction. (Contributed by NM, 26-Jul-1995) (Proof shortened by Andrew Salmon, 25-May-2011) Reduce distinct variable restrictions. (Revised by Wolf Lammen, 20-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eeeanv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 𝜓 ∧ ∃ 𝑧 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eeanv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝜑 ∧ 𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 𝜓 ) ) | |
| 2 | 1 | anbi1i | ⊢ ( ( ∃ 𝑥 ∃ 𝑦 ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑧 𝜒 ) ↔ ( ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 𝜓 ) ∧ ∃ 𝑧 𝜒 ) ) |
| 3 | df-3an | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) | |
| 4 | 3 | exbii | ⊢ ( ∃ 𝑧 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ∃ 𝑧 ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) |
| 5 | 19.42v | ⊢ ( ∃ 𝑧 ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑧 𝜒 ) ) | |
| 6 | 4 5 | bitri | ⊢ ( ∃ 𝑧 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑧 𝜒 ) ) |
| 7 | 6 | 2exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑧 𝜒 ) ) |
| 8 | nfv | ⊢ Ⅎ 𝑦 𝜒 | |
| 9 | 8 | nfex | ⊢ Ⅎ 𝑦 ∃ 𝑧 𝜒 |
| 10 | 9 | 19.41 | ⊢ ( ∃ 𝑦 ( ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑧 𝜒 ) ↔ ( ∃ 𝑦 ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑧 𝜒 ) ) |
| 11 | 10 | exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑧 𝜒 ) ↔ ∃ 𝑥 ( ∃ 𝑦 ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑧 𝜒 ) ) |
| 12 | nfv | ⊢ Ⅎ 𝑥 𝜒 | |
| 13 | 12 | nfex | ⊢ Ⅎ 𝑥 ∃ 𝑧 𝜒 |
| 14 | 13 | 19.41 | ⊢ ( ∃ 𝑥 ( ∃ 𝑦 ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑧 𝜒 ) ↔ ( ∃ 𝑥 ∃ 𝑦 ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑧 𝜒 ) ) |
| 15 | 7 11 14 | 3bitri | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ∃ 𝑥 ∃ 𝑦 ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑧 𝜒 ) ) |
| 16 | df-3an | ⊢ ( ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 𝜓 ∧ ∃ 𝑧 𝜒 ) ↔ ( ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 𝜓 ) ∧ ∃ 𝑧 𝜒 ) ) | |
| 17 | 2 15 16 | 3bitr4i | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 𝜓 ∧ ∃ 𝑧 𝜒 ) ) |