This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute three existential quantifiers over a conjunction. (Contributed by NM, 26-Jul-1995) (Proof shortened by Andrew Salmon, 25-May-2011) Reduce distinct variable restrictions. (Revised by Wolf Lammen, 20-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eeeanv | |- ( E. x E. y E. z ( ph /\ ps /\ ch ) <-> ( E. x ph /\ E. y ps /\ E. z ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eeanv | |- ( E. x E. y ( ph /\ ps ) <-> ( E. x ph /\ E. y ps ) ) |
|
| 2 | 1 | anbi1i | |- ( ( E. x E. y ( ph /\ ps ) /\ E. z ch ) <-> ( ( E. x ph /\ E. y ps ) /\ E. z ch ) ) |
| 3 | df-3an | |- ( ( ph /\ ps /\ ch ) <-> ( ( ph /\ ps ) /\ ch ) ) |
|
| 4 | 3 | exbii | |- ( E. z ( ph /\ ps /\ ch ) <-> E. z ( ( ph /\ ps ) /\ ch ) ) |
| 5 | 19.42v | |- ( E. z ( ( ph /\ ps ) /\ ch ) <-> ( ( ph /\ ps ) /\ E. z ch ) ) |
|
| 6 | 4 5 | bitri | |- ( E. z ( ph /\ ps /\ ch ) <-> ( ( ph /\ ps ) /\ E. z ch ) ) |
| 7 | 6 | 2exbii | |- ( E. x E. y E. z ( ph /\ ps /\ ch ) <-> E. x E. y ( ( ph /\ ps ) /\ E. z ch ) ) |
| 8 | nfv | |- F/ y ch |
|
| 9 | 8 | nfex | |- F/ y E. z ch |
| 10 | 9 | 19.41 | |- ( E. y ( ( ph /\ ps ) /\ E. z ch ) <-> ( E. y ( ph /\ ps ) /\ E. z ch ) ) |
| 11 | 10 | exbii | |- ( E. x E. y ( ( ph /\ ps ) /\ E. z ch ) <-> E. x ( E. y ( ph /\ ps ) /\ E. z ch ) ) |
| 12 | nfv | |- F/ x ch |
|
| 13 | 12 | nfex | |- F/ x E. z ch |
| 14 | 13 | 19.41 | |- ( E. x ( E. y ( ph /\ ps ) /\ E. z ch ) <-> ( E. x E. y ( ph /\ ps ) /\ E. z ch ) ) |
| 15 | 7 11 14 | 3bitri | |- ( E. x E. y E. z ( ph /\ ps /\ ch ) <-> ( E. x E. y ( ph /\ ps ) /\ E. z ch ) ) |
| 16 | df-3an | |- ( ( E. x ph /\ E. y ps /\ E. z ch ) <-> ( ( E. x ph /\ E. y ps ) /\ E. z ch ) ) |
|
| 17 | 2 15 16 | 3bitr4i | |- ( E. x E. y E. z ( ph /\ ps /\ ch ) <-> ( E. x ph /\ E. y ps /\ E. z ch ) ) |