This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of neighbors of a vertex in a simple graph with a finite number of edges is a finite set. (Contributed by Alexander van der Vekens, 19-Dec-2017) (Revised by AV, 28-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nbusgrf1o.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| nbusgrf1o.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | nbusgrfi | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐸 ∈ Fin ∧ 𝑈 ∈ 𝑉 ) → ( 𝐺 NeighbVtx 𝑈 ) ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbusgrf1o.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | nbusgrf1o.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | rabfi | ⊢ ( 𝐸 ∈ Fin → { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ∈ Fin ) | |
| 4 | 3 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐸 ∈ Fin ∧ 𝑈 ∈ 𝑉 ) → { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ∈ Fin ) |
| 5 | 1 2 | edgusgrnbfin | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( 𝐺 NeighbVtx 𝑈 ) ∈ Fin ↔ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ∈ Fin ) ) |
| 6 | 5 | 3adant2 | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐸 ∈ Fin ∧ 𝑈 ∈ 𝑉 ) → ( ( 𝐺 NeighbVtx 𝑈 ) ∈ Fin ↔ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ∈ Fin ) ) |
| 7 | 4 6 | mpbird | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐸 ∈ Fin ∧ 𝑈 ∈ 𝑉 ) → ( 𝐺 NeighbVtx 𝑈 ) ∈ Fin ) |