This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying that the coset of A and the coset of B have no elements in common. (Contributed by Peter Mazsa, 1-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecin0 | |- ( ( A e. V /\ B e. W ) -> ( ( [ A ] R i^i [ B ] R ) = (/) <-> A. x ( A R x -> -. B R x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disj1 | |- ( ( [ A ] R i^i [ B ] R ) = (/) <-> A. x ( x e. [ A ] R -> -. x e. [ B ] R ) ) |
|
| 2 | elecg | |- ( ( x e. _V /\ A e. V ) -> ( x e. [ A ] R <-> A R x ) ) |
|
| 3 | 2 | el2v1 | |- ( A e. V -> ( x e. [ A ] R <-> A R x ) ) |
| 4 | 3 | adantr | |- ( ( A e. V /\ B e. W ) -> ( x e. [ A ] R <-> A R x ) ) |
| 5 | elecALTV | |- ( ( B e. W /\ x e. _V ) -> ( x e. [ B ] R <-> B R x ) ) |
|
| 6 | 5 | elvd | |- ( B e. W -> ( x e. [ B ] R <-> B R x ) ) |
| 7 | 6 | adantl | |- ( ( A e. V /\ B e. W ) -> ( x e. [ B ] R <-> B R x ) ) |
| 8 | 7 | notbid | |- ( ( A e. V /\ B e. W ) -> ( -. x e. [ B ] R <-> -. B R x ) ) |
| 9 | 4 8 | imbi12d | |- ( ( A e. V /\ B e. W ) -> ( ( x e. [ A ] R -> -. x e. [ B ] R ) <-> ( A R x -> -. B R x ) ) ) |
| 10 | 9 | albidv | |- ( ( A e. V /\ B e. W ) -> ( A. x ( x e. [ A ] R -> -. x e. [ B ] R ) <-> A. x ( A R x -> -. B R x ) ) ) |
| 11 | 1 10 | bitrid | |- ( ( A e. V /\ B e. W ) -> ( ( [ A ] R i^i [ B ] R ) = (/) <-> A. x ( A R x -> -. B R x ) ) ) |