This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership of an equivalence class in a quotient set. (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Mario Carneiro, 9-Jul-2014) (Revised by Peter Mazsa, 22-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecelqs | ⊢ ( ( ( 𝑅 ↾ 𝐴 ) ∈ 𝑉 ∧ 𝐵 ∈ 𝐴 ) → [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ [ 𝐵 ] 𝑅 = [ 𝐵 ] 𝑅 | |
| 2 | eceq1 | ⊢ ( 𝑥 = 𝐵 → [ 𝑥 ] 𝑅 = [ 𝐵 ] 𝑅 ) | |
| 3 | 2 | rspceeqv | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ [ 𝐵 ] 𝑅 = [ 𝐵 ] 𝑅 ) → ∃ 𝑥 ∈ 𝐴 [ 𝐵 ] 𝑅 = [ 𝑥 ] 𝑅 ) |
| 4 | 1 3 | mpan2 | ⊢ ( 𝐵 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐴 [ 𝐵 ] 𝑅 = [ 𝑥 ] 𝑅 ) |
| 5 | 4 | adantl | ⊢ ( ( ( 𝑅 ↾ 𝐴 ) ∈ 𝑉 ∧ 𝐵 ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 [ 𝐵 ] 𝑅 = [ 𝑥 ] 𝑅 ) |
| 6 | elecex | ⊢ ( ( 𝑅 ↾ 𝐴 ) ∈ 𝑉 → ( 𝐵 ∈ 𝐴 → [ 𝐵 ] 𝑅 ∈ V ) ) | |
| 7 | 6 | imp | ⊢ ( ( ( 𝑅 ↾ 𝐴 ) ∈ 𝑉 ∧ 𝐵 ∈ 𝐴 ) → [ 𝐵 ] 𝑅 ∈ V ) |
| 8 | elqsg | ⊢ ( [ 𝐵 ] 𝑅 ∈ V → ( [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ↔ ∃ 𝑥 ∈ 𝐴 [ 𝐵 ] 𝑅 = [ 𝑥 ] 𝑅 ) ) | |
| 9 | 7 8 | syl | ⊢ ( ( ( 𝑅 ↾ 𝐴 ) ∈ 𝑉 ∧ 𝐵 ∈ 𝐴 ) → ( [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ↔ ∃ 𝑥 ∈ 𝐴 [ 𝐵 ] 𝑅 = [ 𝑥 ] 𝑅 ) ) |
| 10 | 5 9 | mpbird | ⊢ ( ( ( 𝑅 ↾ 𝐴 ) ∈ 𝑉 ∧ 𝐵 ∈ 𝐴 ) → [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) |