This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Proof of dvelimh without using ax-13 but with additional distinct variable conditions. (Contributed by NM, 1-Oct-2002) (Revised by Andrew Salmon, 21-Jul-2011) (Revised by NM, 1-Aug-2017) (Proof shortened by Wolf Lammen, 23-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvelimhw.1 | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
| dvelimhw.2 | ⊢ ( 𝜓 → ∀ 𝑧 𝜓 ) | ||
| dvelimhw.3 | ⊢ ( 𝑧 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | ||
| dvelimhw.4 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑦 = 𝑧 → ∀ 𝑥 𝑦 = 𝑧 ) ) | ||
| Assertion | dvelimhw | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝜓 → ∀ 𝑥 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvelimhw.1 | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
| 2 | dvelimhw.2 | ⊢ ( 𝜓 → ∀ 𝑧 𝜓 ) | |
| 3 | dvelimhw.3 | ⊢ ( 𝑧 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | dvelimhw.4 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑦 = 𝑧 → ∀ 𝑥 𝑦 = 𝑧 ) ) | |
| 5 | nfv | ⊢ Ⅎ 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑦 | |
| 6 | equcom | ⊢ ( 𝑧 = 𝑦 ↔ 𝑦 = 𝑧 ) | |
| 7 | nfna1 | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 | |
| 8 | 7 4 | nf5d | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑦 = 𝑧 ) |
| 9 | 6 8 | nfxfrd | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑧 = 𝑦 ) |
| 10 | 1 | nf5i | ⊢ Ⅎ 𝑥 𝜑 |
| 11 | 10 | a1i | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝜑 ) |
| 12 | 9 11 | nfimd | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 ( 𝑧 = 𝑦 → 𝜑 ) ) |
| 13 | 5 12 | nfald | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) ) |
| 14 | 2 3 | equsalhw | ⊢ ( ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) ↔ 𝜓 ) |
| 15 | 14 | nfbii | ⊢ ( Ⅎ 𝑥 ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) ↔ Ⅎ 𝑥 𝜓 ) |
| 16 | 13 15 | sylib | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝜓 ) |
| 17 | 16 | nf5rd | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝜓 → ∀ 𝑥 𝜓 ) ) |