This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Proof of dvelimh without using ax-13 but with additional distinct variable conditions. (Contributed by NM, 1-Oct-2002) (Revised by Andrew Salmon, 21-Jul-2011) (Revised by NM, 1-Aug-2017) (Proof shortened by Wolf Lammen, 23-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvelimhw.1 | |- ( ph -> A. x ph ) |
|
| dvelimhw.2 | |- ( ps -> A. z ps ) |
||
| dvelimhw.3 | |- ( z = y -> ( ph <-> ps ) ) |
||
| dvelimhw.4 | |- ( -. A. x x = y -> ( y = z -> A. x y = z ) ) |
||
| Assertion | dvelimhw | |- ( -. A. x x = y -> ( ps -> A. x ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvelimhw.1 | |- ( ph -> A. x ph ) |
|
| 2 | dvelimhw.2 | |- ( ps -> A. z ps ) |
|
| 3 | dvelimhw.3 | |- ( z = y -> ( ph <-> ps ) ) |
|
| 4 | dvelimhw.4 | |- ( -. A. x x = y -> ( y = z -> A. x y = z ) ) |
|
| 5 | nfv | |- F/ z -. A. x x = y |
|
| 6 | equcom | |- ( z = y <-> y = z ) |
|
| 7 | nfna1 | |- F/ x -. A. x x = y |
|
| 8 | 7 4 | nf5d | |- ( -. A. x x = y -> F/ x y = z ) |
| 9 | 6 8 | nfxfrd | |- ( -. A. x x = y -> F/ x z = y ) |
| 10 | 1 | nf5i | |- F/ x ph |
| 11 | 10 | a1i | |- ( -. A. x x = y -> F/ x ph ) |
| 12 | 9 11 | nfimd | |- ( -. A. x x = y -> F/ x ( z = y -> ph ) ) |
| 13 | 5 12 | nfald | |- ( -. A. x x = y -> F/ x A. z ( z = y -> ph ) ) |
| 14 | 2 3 | equsalhw | |- ( A. z ( z = y -> ph ) <-> ps ) |
| 15 | 14 | nfbii | |- ( F/ x A. z ( z = y -> ph ) <-> F/ x ps ) |
| 16 | 13 15 | sylib | |- ( -. A. x x = y -> F/ x ps ) |
| 17 | 16 | nf5rd | |- ( -. A. x x = y -> ( ps -> A. x ps ) ) |