This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of dvelim without any variable restrictions. Usage of this theorem is discouraged because it depends on ax-13 . Check out dvelimhw for a version requiring fewer axioms. (Contributed by NM, 1-Oct-2002) (Proof shortened by Wolf Lammen, 11-May-2018) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvelimh.1 | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
| dvelimh.2 | ⊢ ( 𝜓 → ∀ 𝑧 𝜓 ) | ||
| dvelimh.3 | ⊢ ( 𝑧 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | dvelimh | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝜓 → ∀ 𝑥 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvelimh.1 | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
| 2 | dvelimh.2 | ⊢ ( 𝜓 → ∀ 𝑧 𝜓 ) | |
| 3 | dvelimh.3 | ⊢ ( 𝑧 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | 1 | nf5i | ⊢ Ⅎ 𝑥 𝜑 |
| 5 | 2 | nf5i | ⊢ Ⅎ 𝑧 𝜓 |
| 6 | 4 5 3 | dvelimf | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝜓 ) |
| 7 | 6 | nf5rd | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝜓 → ∀ 𝑥 𝜓 ) ) |