This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Proof of dvelimh that uses ax-c11 but not ax-c15 , ax-c11n , or ax-12 . Version of dvelimh using ax-c11 instead of axc11 . (Contributed by NM, 12-Nov-2002) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvelimf-o.1 | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
| dvelimf-o.2 | ⊢ ( 𝜓 → ∀ 𝑧 𝜓 ) | ||
| dvelimf-o.3 | ⊢ ( 𝑧 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | dvelimf-o | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝜓 → ∀ 𝑥 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvelimf-o.1 | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
| 2 | dvelimf-o.2 | ⊢ ( 𝜓 → ∀ 𝑧 𝜓 ) | |
| 3 | dvelimf-o.3 | ⊢ ( 𝑧 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | hba1-o | ⊢ ( ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) → ∀ 𝑧 ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) ) | |
| 5 | ax-c11 | ⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ( ∀ 𝑧 ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) → ∀ 𝑥 ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) ) ) | |
| 6 | 5 | aecoms-o | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑧 ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) → ∀ 𝑥 ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) ) ) |
| 7 | 4 6 | syl5 | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) → ∀ 𝑥 ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) ) ) |
| 8 | 7 | a1d | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) → ∀ 𝑥 ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) ) ) ) |
| 9 | hbnae-o | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑧 ) | |
| 10 | hbnae-o | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑦 ) | |
| 11 | 9 10 | hban | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ∀ 𝑧 ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) |
| 12 | hbnae-o | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑧 ) | |
| 13 | hbnae-o | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 ) | |
| 14 | 12 13 | hban | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ∀ 𝑥 ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) |
| 15 | ax-c9 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑧 = 𝑦 → ∀ 𝑥 𝑧 = 𝑦 ) ) ) | |
| 16 | 15 | imp | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( 𝑧 = 𝑦 → ∀ 𝑥 𝑧 = 𝑦 ) ) |
| 17 | 1 | a1i | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( 𝜑 → ∀ 𝑥 𝜑 ) ) |
| 18 | 14 16 17 | hbimd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( ( 𝑧 = 𝑦 → 𝜑 ) → ∀ 𝑥 ( 𝑧 = 𝑦 → 𝜑 ) ) ) |
| 19 | 11 18 | hbald | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) → ∀ 𝑥 ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) ) ) |
| 20 | 19 | ex | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) → ∀ 𝑥 ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) ) ) ) |
| 21 | 8 20 | pm2.61i | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) → ∀ 𝑥 ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) ) ) |
| 22 | 2 3 | equsalh | ⊢ ( ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) ↔ 𝜓 ) |
| 23 | 22 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) ↔ ∀ 𝑥 𝜓 ) |
| 24 | 21 22 23 | 3imtr3g | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝜓 → ∀ 𝑥 𝜓 ) ) |