This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Proof of dvelimh that uses ax-c11 but not ax-c15 , ax-c11n , or ax-12 . Version of dvelimh using ax-c11 instead of axc11 . (Contributed by NM, 12-Nov-2002) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvelimf-o.1 | |- ( ph -> A. x ph ) |
|
| dvelimf-o.2 | |- ( ps -> A. z ps ) |
||
| dvelimf-o.3 | |- ( z = y -> ( ph <-> ps ) ) |
||
| Assertion | dvelimf-o | |- ( -. A. x x = y -> ( ps -> A. x ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvelimf-o.1 | |- ( ph -> A. x ph ) |
|
| 2 | dvelimf-o.2 | |- ( ps -> A. z ps ) |
|
| 3 | dvelimf-o.3 | |- ( z = y -> ( ph <-> ps ) ) |
|
| 4 | hba1-o | |- ( A. z ( z = y -> ph ) -> A. z A. z ( z = y -> ph ) ) |
|
| 5 | ax-c11 | |- ( A. z z = x -> ( A. z A. z ( z = y -> ph ) -> A. x A. z ( z = y -> ph ) ) ) |
|
| 6 | 5 | aecoms-o | |- ( A. x x = z -> ( A. z A. z ( z = y -> ph ) -> A. x A. z ( z = y -> ph ) ) ) |
| 7 | 4 6 | syl5 | |- ( A. x x = z -> ( A. z ( z = y -> ph ) -> A. x A. z ( z = y -> ph ) ) ) |
| 8 | 7 | a1d | |- ( A. x x = z -> ( -. A. x x = y -> ( A. z ( z = y -> ph ) -> A. x A. z ( z = y -> ph ) ) ) ) |
| 9 | hbnae-o | |- ( -. A. x x = z -> A. z -. A. x x = z ) |
|
| 10 | hbnae-o | |- ( -. A. x x = y -> A. z -. A. x x = y ) |
|
| 11 | 9 10 | hban | |- ( ( -. A. x x = z /\ -. A. x x = y ) -> A. z ( -. A. x x = z /\ -. A. x x = y ) ) |
| 12 | hbnae-o | |- ( -. A. x x = z -> A. x -. A. x x = z ) |
|
| 13 | hbnae-o | |- ( -. A. x x = y -> A. x -. A. x x = y ) |
|
| 14 | 12 13 | hban | |- ( ( -. A. x x = z /\ -. A. x x = y ) -> A. x ( -. A. x x = z /\ -. A. x x = y ) ) |
| 15 | ax-c9 | |- ( -. A. x x = z -> ( -. A. x x = y -> ( z = y -> A. x z = y ) ) ) |
|
| 16 | 15 | imp | |- ( ( -. A. x x = z /\ -. A. x x = y ) -> ( z = y -> A. x z = y ) ) |
| 17 | 1 | a1i | |- ( ( -. A. x x = z /\ -. A. x x = y ) -> ( ph -> A. x ph ) ) |
| 18 | 14 16 17 | hbimd | |- ( ( -. A. x x = z /\ -. A. x x = y ) -> ( ( z = y -> ph ) -> A. x ( z = y -> ph ) ) ) |
| 19 | 11 18 | hbald | |- ( ( -. A. x x = z /\ -. A. x x = y ) -> ( A. z ( z = y -> ph ) -> A. x A. z ( z = y -> ph ) ) ) |
| 20 | 19 | ex | |- ( -. A. x x = z -> ( -. A. x x = y -> ( A. z ( z = y -> ph ) -> A. x A. z ( z = y -> ph ) ) ) ) |
| 21 | 8 20 | pm2.61i | |- ( -. A. x x = y -> ( A. z ( z = y -> ph ) -> A. x A. z ( z = y -> ph ) ) ) |
| 22 | 2 3 | equsalh | |- ( A. z ( z = y -> ph ) <-> ps ) |
| 23 | 22 | albii | |- ( A. x A. z ( z = y -> ph ) <-> A. x ps ) |
| 24 | 21 22 23 | 3imtr3g | |- ( -. A. x x = y -> ( ps -> A. x ps ) ) |