This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction form of dvelimc . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Mario Carneiro, 8-Oct-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvelimdc.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| dvelimdc.2 | ⊢ Ⅎ 𝑧 𝜑 | ||
| dvelimdc.3 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) | ||
| dvelimdc.4 | ⊢ ( 𝜑 → Ⅎ 𝑧 𝐵 ) | ||
| dvelimdc.5 | ⊢ ( 𝜑 → ( 𝑧 = 𝑦 → 𝐴 = 𝐵 ) ) | ||
| Assertion | dvelimdc | ⊢ ( 𝜑 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvelimdc.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | dvelimdc.2 | ⊢ Ⅎ 𝑧 𝜑 | |
| 3 | dvelimdc.3 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) | |
| 4 | dvelimdc.4 | ⊢ ( 𝜑 → Ⅎ 𝑧 𝐵 ) | |
| 5 | dvelimdc.5 | ⊢ ( 𝜑 → ( 𝑧 = 𝑦 → 𝐴 = 𝐵 ) ) | |
| 6 | nfv | ⊢ Ⅎ 𝑤 ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) | |
| 7 | 3 | nfcrd | ⊢ ( 𝜑 → Ⅎ 𝑥 𝑤 ∈ 𝐴 ) |
| 8 | 4 | nfcrd | ⊢ ( 𝜑 → Ⅎ 𝑧 𝑤 ∈ 𝐵 ) |
| 9 | eleq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝑤 ∈ 𝐴 ↔ 𝑤 ∈ 𝐵 ) ) | |
| 10 | 5 9 | syl6 | ⊢ ( 𝜑 → ( 𝑧 = 𝑦 → ( 𝑤 ∈ 𝐴 ↔ 𝑤 ∈ 𝐵 ) ) ) |
| 11 | 1 2 7 8 10 | dvelimdf | ⊢ ( 𝜑 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑤 ∈ 𝐵 ) ) |
| 12 | 11 | imp | ⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝑤 ∈ 𝐵 ) |
| 13 | 6 12 | nfcd | ⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝐵 ) |
| 14 | 13 | ex | ⊢ ( 𝜑 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝐵 ) ) |