This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction form of dvelimc . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Mario Carneiro, 8-Oct-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvelimdc.1 | |- F/ x ph |
|
| dvelimdc.2 | |- F/ z ph |
||
| dvelimdc.3 | |- ( ph -> F/_ x A ) |
||
| dvelimdc.4 | |- ( ph -> F/_ z B ) |
||
| dvelimdc.5 | |- ( ph -> ( z = y -> A = B ) ) |
||
| Assertion | dvelimdc | |- ( ph -> ( -. A. x x = y -> F/_ x B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvelimdc.1 | |- F/ x ph |
|
| 2 | dvelimdc.2 | |- F/ z ph |
|
| 3 | dvelimdc.3 | |- ( ph -> F/_ x A ) |
|
| 4 | dvelimdc.4 | |- ( ph -> F/_ z B ) |
|
| 5 | dvelimdc.5 | |- ( ph -> ( z = y -> A = B ) ) |
|
| 6 | nfv | |- F/ w ( ph /\ -. A. x x = y ) |
|
| 7 | 3 | nfcrd | |- ( ph -> F/ x w e. A ) |
| 8 | 4 | nfcrd | |- ( ph -> F/ z w e. B ) |
| 9 | eleq2 | |- ( A = B -> ( w e. A <-> w e. B ) ) |
|
| 10 | 5 9 | syl6 | |- ( ph -> ( z = y -> ( w e. A <-> w e. B ) ) ) |
| 11 | 1 2 7 8 10 | dvelimdf | |- ( ph -> ( -. A. x x = y -> F/ x w e. B ) ) |
| 12 | 11 | imp | |- ( ( ph /\ -. A. x x = y ) -> F/ x w e. B ) |
| 13 | 6 12 | nfcd | |- ( ( ph /\ -. A. x x = y ) -> F/_ x B ) |
| 14 | 13 | ex | |- ( ph -> ( -. A. x x = y -> F/_ x B ) ) |