This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of dvelim for classes. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Mario Carneiro, 8-Oct-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvelimc.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| dvelimc.2 | ⊢ Ⅎ 𝑧 𝐵 | ||
| dvelimc.3 | ⊢ ( 𝑧 = 𝑦 → 𝐴 = 𝐵 ) | ||
| Assertion | dvelimc | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvelimc.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | dvelimc.2 | ⊢ Ⅎ 𝑧 𝐵 | |
| 3 | dvelimc.3 | ⊢ ( 𝑧 = 𝑦 → 𝐴 = 𝐵 ) | |
| 4 | nftru | ⊢ Ⅎ 𝑥 ⊤ | |
| 5 | nftru | ⊢ Ⅎ 𝑧 ⊤ | |
| 6 | 1 | a1i | ⊢ ( ⊤ → Ⅎ 𝑥 𝐴 ) |
| 7 | 2 | a1i | ⊢ ( ⊤ → Ⅎ 𝑧 𝐵 ) |
| 8 | 3 | a1i | ⊢ ( ⊤ → ( 𝑧 = 𝑦 → 𝐴 = 𝐵 ) ) |
| 9 | 4 5 6 7 8 | dvelimdc | ⊢ ( ⊤ → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝐵 ) ) |
| 10 | 9 | mptru | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝐵 ) |