This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A divisor of a squarefree number is squarefree. (Contributed by Mario Carneiro, 1-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdssqf | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴 ) → ( ( μ ‘ 𝐴 ) ≠ 0 → ( μ ‘ 𝐵 ) ≠ 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → 𝐵 ∥ 𝐴 ) | |
| 2 | prmz | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) | |
| 3 | 2 | adantl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℤ ) |
| 4 | zsqcl | ⊢ ( 𝑝 ∈ ℤ → ( 𝑝 ↑ 2 ) ∈ ℤ ) | |
| 5 | 3 4 | syl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ↑ 2 ) ∈ ℤ ) |
| 6 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → 𝐵 ∈ ℕ ) | |
| 7 | 6 | nnzd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → 𝐵 ∈ ℤ ) |
| 8 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∈ ℕ ) | |
| 9 | 8 | nnzd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∈ ℤ ) |
| 10 | dvdstr | ⊢ ( ( ( 𝑝 ↑ 2 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ( ( 𝑝 ↑ 2 ) ∥ 𝐵 ∧ 𝐵 ∥ 𝐴 ) → ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) | |
| 11 | 5 7 9 10 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑝 ↑ 2 ) ∥ 𝐵 ∧ 𝐵 ∥ 𝐴 ) → ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) |
| 12 | 1 11 | mpan2d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ↑ 2 ) ∥ 𝐵 → ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) |
| 13 | 12 | reximdva | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴 ) → ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐵 → ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) |
| 14 | isnsqf | ⊢ ( 𝐵 ∈ ℕ → ( ( μ ‘ 𝐵 ) = 0 ↔ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐵 ) ) | |
| 15 | 14 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴 ) → ( ( μ ‘ 𝐵 ) = 0 ↔ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐵 ) ) |
| 16 | isnsqf | ⊢ ( 𝐴 ∈ ℕ → ( ( μ ‘ 𝐴 ) = 0 ↔ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) | |
| 17 | 16 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴 ) → ( ( μ ‘ 𝐴 ) = 0 ↔ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) |
| 18 | 13 15 17 | 3imtr4d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴 ) → ( ( μ ‘ 𝐵 ) = 0 → ( μ ‘ 𝐴 ) = 0 ) ) |
| 19 | 18 | necon3d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴 ) → ( ( μ ‘ 𝐴 ) ≠ 0 → ( μ ‘ 𝐵 ) ≠ 0 ) ) |