This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A divisor of a squarefree number is squarefree. (Contributed by Mario Carneiro, 1-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdssqf | |- ( ( A e. NN /\ B e. NN /\ B || A ) -> ( ( mmu ` A ) =/= 0 -> ( mmu ` B ) =/= 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 | |- ( ( ( A e. NN /\ B e. NN /\ B || A ) /\ p e. Prime ) -> B || A ) |
|
| 2 | prmz | |- ( p e. Prime -> p e. ZZ ) |
|
| 3 | 2 | adantl | |- ( ( ( A e. NN /\ B e. NN /\ B || A ) /\ p e. Prime ) -> p e. ZZ ) |
| 4 | zsqcl | |- ( p e. ZZ -> ( p ^ 2 ) e. ZZ ) |
|
| 5 | 3 4 | syl | |- ( ( ( A e. NN /\ B e. NN /\ B || A ) /\ p e. Prime ) -> ( p ^ 2 ) e. ZZ ) |
| 6 | simpl2 | |- ( ( ( A e. NN /\ B e. NN /\ B || A ) /\ p e. Prime ) -> B e. NN ) |
|
| 7 | 6 | nnzd | |- ( ( ( A e. NN /\ B e. NN /\ B || A ) /\ p e. Prime ) -> B e. ZZ ) |
| 8 | simpl1 | |- ( ( ( A e. NN /\ B e. NN /\ B || A ) /\ p e. Prime ) -> A e. NN ) |
|
| 9 | 8 | nnzd | |- ( ( ( A e. NN /\ B e. NN /\ B || A ) /\ p e. Prime ) -> A e. ZZ ) |
| 10 | dvdstr | |- ( ( ( p ^ 2 ) e. ZZ /\ B e. ZZ /\ A e. ZZ ) -> ( ( ( p ^ 2 ) || B /\ B || A ) -> ( p ^ 2 ) || A ) ) |
|
| 11 | 5 7 9 10 | syl3anc | |- ( ( ( A e. NN /\ B e. NN /\ B || A ) /\ p e. Prime ) -> ( ( ( p ^ 2 ) || B /\ B || A ) -> ( p ^ 2 ) || A ) ) |
| 12 | 1 11 | mpan2d | |- ( ( ( A e. NN /\ B e. NN /\ B || A ) /\ p e. Prime ) -> ( ( p ^ 2 ) || B -> ( p ^ 2 ) || A ) ) |
| 13 | 12 | reximdva | |- ( ( A e. NN /\ B e. NN /\ B || A ) -> ( E. p e. Prime ( p ^ 2 ) || B -> E. p e. Prime ( p ^ 2 ) || A ) ) |
| 14 | isnsqf | |- ( B e. NN -> ( ( mmu ` B ) = 0 <-> E. p e. Prime ( p ^ 2 ) || B ) ) |
|
| 15 | 14 | 3ad2ant2 | |- ( ( A e. NN /\ B e. NN /\ B || A ) -> ( ( mmu ` B ) = 0 <-> E. p e. Prime ( p ^ 2 ) || B ) ) |
| 16 | isnsqf | |- ( A e. NN -> ( ( mmu ` A ) = 0 <-> E. p e. Prime ( p ^ 2 ) || A ) ) |
|
| 17 | 16 | 3ad2ant1 | |- ( ( A e. NN /\ B e. NN /\ B || A ) -> ( ( mmu ` A ) = 0 <-> E. p e. Prime ( p ^ 2 ) || A ) ) |
| 18 | 13 15 17 | 3imtr4d | |- ( ( A e. NN /\ B e. NN /\ B || A ) -> ( ( mmu ` B ) = 0 -> ( mmu ` A ) = 0 ) ) |
| 19 | 18 | necon3d | |- ( ( A e. NN /\ B e. NN /\ B || A ) -> ( ( mmu ` A ) =/= 0 -> ( mmu ` B ) =/= 0 ) ) |