This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of a dividing element. (Contributed by Mario Carneiro, 5-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsr.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| dvdsr.2 | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | ||
| Assertion | dvdsrcl2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∥ 𝑌 ) → 𝑌 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsr.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | dvdsr.2 | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 4 | 1 2 3 | dvdsr | ⊢ ( 𝑋 ∥ 𝑌 ↔ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ) |
| 5 | 1 3 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 ) ∈ 𝐵 ) |
| 6 | 5 | 3expa | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 ) ∈ 𝐵 ) |
| 7 | 6 | an32s | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 ) ∈ 𝐵 ) |
| 8 | eleq1 | ⊢ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 ) ∈ 𝐵 ↔ 𝑌 ∈ 𝐵 ) ) | |
| 9 | 7 8 | syl5ibcom | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 → 𝑌 ∈ 𝐵 ) ) |
| 10 | 9 | rexlimdva | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 → 𝑌 ∈ 𝐵 ) ) |
| 11 | 10 | impr | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ) → 𝑌 ∈ 𝐵 ) |
| 12 | 4 11 | sylan2b | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∥ 𝑌 ) → 𝑌 ∈ 𝐵 ) |