This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of a dividing element. (Contributed by Mario Carneiro, 5-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsr.1 | |- B = ( Base ` R ) |
|
| dvdsr.2 | |- .|| = ( ||r ` R ) |
||
| Assertion | dvdsrcl2 | |- ( ( R e. Ring /\ X .|| Y ) -> Y e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsr.1 | |- B = ( Base ` R ) |
|
| 2 | dvdsr.2 | |- .|| = ( ||r ` R ) |
|
| 3 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 4 | 1 2 3 | dvdsr | |- ( X .|| Y <-> ( X e. B /\ E. x e. B ( x ( .r ` R ) X ) = Y ) ) |
| 5 | 1 3 | ringcl | |- ( ( R e. Ring /\ x e. B /\ X e. B ) -> ( x ( .r ` R ) X ) e. B ) |
| 6 | 5 | 3expa | |- ( ( ( R e. Ring /\ x e. B ) /\ X e. B ) -> ( x ( .r ` R ) X ) e. B ) |
| 7 | 6 | an32s | |- ( ( ( R e. Ring /\ X e. B ) /\ x e. B ) -> ( x ( .r ` R ) X ) e. B ) |
| 8 | eleq1 | |- ( ( x ( .r ` R ) X ) = Y -> ( ( x ( .r ` R ) X ) e. B <-> Y e. B ) ) |
|
| 9 | 7 8 | syl5ibcom | |- ( ( ( R e. Ring /\ X e. B ) /\ x e. B ) -> ( ( x ( .r ` R ) X ) = Y -> Y e. B ) ) |
| 10 | 9 | rexlimdva | |- ( ( R e. Ring /\ X e. B ) -> ( E. x e. B ( x ( .r ` R ) X ) = Y -> Y e. B ) ) |
| 11 | 10 | impr | |- ( ( R e. Ring /\ ( X e. B /\ E. x e. B ( x ( .r ` R ) X ) = Y ) ) -> Y e. B ) |
| 12 | 4 11 | sylan2b | |- ( ( R e. Ring /\ X .|| Y ) -> Y e. B ) |