This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The greatest common divisor of a positive integer and another integer it divides is itself. (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsgcdidd.1 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | |
| dvdsgcdidd.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | ||
| dvdsgcdidd.3 | ⊢ ( 𝜑 → 𝑀 ∥ 𝑁 ) | ||
| Assertion | dvdsgcdidd | ⊢ ( 𝜑 → ( 𝑀 gcd 𝑁 ) = 𝑀 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsgcdidd.1 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | |
| 2 | dvdsgcdidd.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | |
| 3 | dvdsgcdidd.3 | ⊢ ( 𝜑 → 𝑀 ∥ 𝑁 ) | |
| 4 | 2 | zcnd | ⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 5 | 1 | nncnd | ⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 6 | 1 | nnne0d | ⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
| 7 | 4 5 6 | divcan1d | ⊢ ( 𝜑 → ( ( 𝑁 / 𝑀 ) · 𝑀 ) = 𝑁 ) |
| 8 | 7 | oveq2d | ⊢ ( 𝜑 → ( 𝑀 gcd ( ( 𝑁 / 𝑀 ) · 𝑀 ) ) = ( 𝑀 gcd 𝑁 ) ) |
| 9 | 1 | nnnn0d | ⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 10 | 1 | nnzd | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 11 | dvdsval2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ( 𝑁 / 𝑀 ) ∈ ℤ ) ) | |
| 12 | 10 6 2 11 | syl3anc | ⊢ ( 𝜑 → ( 𝑀 ∥ 𝑁 ↔ ( 𝑁 / 𝑀 ) ∈ ℤ ) ) |
| 13 | 3 12 | mpbid | ⊢ ( 𝜑 → ( 𝑁 / 𝑀 ) ∈ ℤ ) |
| 14 | 9 13 | gcdmultipled | ⊢ ( 𝜑 → ( 𝑀 gcd ( ( 𝑁 / 𝑀 ) · 𝑀 ) ) = 𝑀 ) |
| 15 | 8 14 | eqtr3d | ⊢ ( 𝜑 → ( 𝑀 gcd 𝑁 ) = 𝑀 ) |