This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The greatest common divisor of a positive integer and another integer it divides is itself. (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsgcdidd.1 | |- ( ph -> M e. NN ) |
|
| dvdsgcdidd.2 | |- ( ph -> N e. ZZ ) |
||
| dvdsgcdidd.3 | |- ( ph -> M || N ) |
||
| Assertion | dvdsgcdidd | |- ( ph -> ( M gcd N ) = M ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsgcdidd.1 | |- ( ph -> M e. NN ) |
|
| 2 | dvdsgcdidd.2 | |- ( ph -> N e. ZZ ) |
|
| 3 | dvdsgcdidd.3 | |- ( ph -> M || N ) |
|
| 4 | 2 | zcnd | |- ( ph -> N e. CC ) |
| 5 | 1 | nncnd | |- ( ph -> M e. CC ) |
| 6 | 1 | nnne0d | |- ( ph -> M =/= 0 ) |
| 7 | 4 5 6 | divcan1d | |- ( ph -> ( ( N / M ) x. M ) = N ) |
| 8 | 7 | oveq2d | |- ( ph -> ( M gcd ( ( N / M ) x. M ) ) = ( M gcd N ) ) |
| 9 | 1 | nnnn0d | |- ( ph -> M e. NN0 ) |
| 10 | 1 | nnzd | |- ( ph -> M e. ZZ ) |
| 11 | dvdsval2 | |- ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) -> ( M || N <-> ( N / M ) e. ZZ ) ) |
|
| 12 | 10 6 2 11 | syl3anc | |- ( ph -> ( M || N <-> ( N / M ) e. ZZ ) ) |
| 13 | 3 12 | mpbid | |- ( ph -> ( N / M ) e. ZZ ) |
| 14 | 9 13 | gcdmultipled | |- ( ph -> ( M gcd ( ( N / M ) x. M ) ) = M ) |
| 15 | 8 14 | eqtr3d | |- ( ph -> ( M gcd N ) = M ) |