This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The greatest common divisor of a nonnegative integer M and a multiple of it is M itself. (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gcdmultipled.1 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) | |
| gcdmultipled.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | ||
| Assertion | gcdmultipled | ⊢ ( 𝜑 → ( 𝑀 gcd ( 𝑁 · 𝑀 ) ) = 𝑀 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdmultipled.1 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) | |
| 2 | gcdmultipled.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | |
| 3 | 1 | nn0zd | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 4 | 0zd | ⊢ ( 𝜑 → 0 ∈ ℤ ) | |
| 5 | gcdaddm | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 ∈ ℤ ) → ( 𝑀 gcd 0 ) = ( 𝑀 gcd ( 0 + ( 𝑁 · 𝑀 ) ) ) ) | |
| 6 | 2 3 4 5 | syl3anc | ⊢ ( 𝜑 → ( 𝑀 gcd 0 ) = ( 𝑀 gcd ( 0 + ( 𝑁 · 𝑀 ) ) ) ) |
| 7 | nn0gcdid0 | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 gcd 0 ) = 𝑀 ) | |
| 8 | 1 7 | syl | ⊢ ( 𝜑 → ( 𝑀 gcd 0 ) = 𝑀 ) |
| 9 | 2 3 | zmulcld | ⊢ ( 𝜑 → ( 𝑁 · 𝑀 ) ∈ ℤ ) |
| 10 | 9 | zcnd | ⊢ ( 𝜑 → ( 𝑁 · 𝑀 ) ∈ ℂ ) |
| 11 | 10 | addlidd | ⊢ ( 𝜑 → ( 0 + ( 𝑁 · 𝑀 ) ) = ( 𝑁 · 𝑀 ) ) |
| 12 | 11 | oveq2d | ⊢ ( 𝜑 → ( 𝑀 gcd ( 0 + ( 𝑁 · 𝑀 ) ) ) = ( 𝑀 gcd ( 𝑁 · 𝑀 ) ) ) |
| 13 | 6 8 12 | 3eqtr3rd | ⊢ ( 𝜑 → ( 𝑀 gcd ( 𝑁 · 𝑀 ) ) = 𝑀 ) |