This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two numbers are divisible, so are their nonnegative exponents. Similar to dvdssqim for nonnegative exponents. (Contributed by Steven Nguyen, 2-Apr-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsexpim | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> ( A || B -> ( A ^ N ) || ( B ^ N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divides | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A || B <-> E. k e. ZZ ( k x. A ) = B ) ) |
|
| 2 | 1 | 3adant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> ( A || B <-> E. k e. ZZ ( k x. A ) = B ) ) |
| 3 | zexpcl | |- ( ( k e. ZZ /\ N e. NN0 ) -> ( k ^ N ) e. ZZ ) |
|
| 4 | 3 | ancoms | |- ( ( N e. NN0 /\ k e. ZZ ) -> ( k ^ N ) e. ZZ ) |
| 5 | 4 | adantll | |- ( ( ( A e. ZZ /\ N e. NN0 ) /\ k e. ZZ ) -> ( k ^ N ) e. ZZ ) |
| 6 | zexpcl | |- ( ( A e. ZZ /\ N e. NN0 ) -> ( A ^ N ) e. ZZ ) |
|
| 7 | 6 | adantr | |- ( ( ( A e. ZZ /\ N e. NN0 ) /\ k e. ZZ ) -> ( A ^ N ) e. ZZ ) |
| 8 | dvdsmul2 | |- ( ( ( k ^ N ) e. ZZ /\ ( A ^ N ) e. ZZ ) -> ( A ^ N ) || ( ( k ^ N ) x. ( A ^ N ) ) ) |
|
| 9 | 5 7 8 | syl2anc | |- ( ( ( A e. ZZ /\ N e. NN0 ) /\ k e. ZZ ) -> ( A ^ N ) || ( ( k ^ N ) x. ( A ^ N ) ) ) |
| 10 | zcn | |- ( k e. ZZ -> k e. CC ) |
|
| 11 | 10 | adantl | |- ( ( ( A e. ZZ /\ N e. NN0 ) /\ k e. ZZ ) -> k e. CC ) |
| 12 | zcn | |- ( A e. ZZ -> A e. CC ) |
|
| 13 | 12 | ad2antrr | |- ( ( ( A e. ZZ /\ N e. NN0 ) /\ k e. ZZ ) -> A e. CC ) |
| 14 | simplr | |- ( ( ( A e. ZZ /\ N e. NN0 ) /\ k e. ZZ ) -> N e. NN0 ) |
|
| 15 | 11 13 14 | mulexpd | |- ( ( ( A e. ZZ /\ N e. NN0 ) /\ k e. ZZ ) -> ( ( k x. A ) ^ N ) = ( ( k ^ N ) x. ( A ^ N ) ) ) |
| 16 | 9 15 | breqtrrd | |- ( ( ( A e. ZZ /\ N e. NN0 ) /\ k e. ZZ ) -> ( A ^ N ) || ( ( k x. A ) ^ N ) ) |
| 17 | oveq1 | |- ( ( k x. A ) = B -> ( ( k x. A ) ^ N ) = ( B ^ N ) ) |
|
| 18 | 17 | breq2d | |- ( ( k x. A ) = B -> ( ( A ^ N ) || ( ( k x. A ) ^ N ) <-> ( A ^ N ) || ( B ^ N ) ) ) |
| 19 | 16 18 | syl5ibcom | |- ( ( ( A e. ZZ /\ N e. NN0 ) /\ k e. ZZ ) -> ( ( k x. A ) = B -> ( A ^ N ) || ( B ^ N ) ) ) |
| 20 | 19 | rexlimdva | |- ( ( A e. ZZ /\ N e. NN0 ) -> ( E. k e. ZZ ( k x. A ) = B -> ( A ^ N ) || ( B ^ N ) ) ) |
| 21 | 20 | 3adant2 | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> ( E. k e. ZZ ( k x. A ) = B -> ( A ^ N ) || ( B ^ N ) ) ) |
| 22 | 2 21 | sylbid | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> ( A || B -> ( A ^ N ) || ( B ^ N ) ) ) |