This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derivative exercise: the derivative with respect to y of A x sin(By), given two constants A and B . (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvasinbx | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · ( sin ‘ ( 𝐵 · 𝑦 ) ) ) ) ) = ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 · 𝐵 ) · ( cos ‘ ( 𝐵 · 𝑦 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnelprrecn | ⊢ ℂ ∈ { ℝ , ℂ } | |
| 2 | 1 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ℂ ∈ { ℝ , ℂ } ) |
| 3 | simpll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 4 | 0cnd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℂ ) → 0 ∈ ℂ ) | |
| 5 | 1 | a1i | ⊢ ( 𝐴 ∈ ℂ → ℂ ∈ { ℝ , ℂ } ) |
| 6 | id | ⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) | |
| 7 | 5 6 | dvmptc | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝐴 ) ) = ( 𝑦 ∈ ℂ ↦ 0 ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝐴 ) ) = ( 𝑦 ∈ ℂ ↦ 0 ) ) |
| 9 | mulcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝐵 · 𝑦 ) ∈ ℂ ) | |
| 10 | 9 | sincld | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( sin ‘ ( 𝐵 · 𝑦 ) ) ∈ ℂ ) |
| 11 | 10 | adantll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℂ ) → ( sin ‘ ( 𝐵 · 𝑦 ) ) ∈ ℂ ) |
| 12 | simpl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 13 | 9 | coscld | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( cos ‘ ( 𝐵 · 𝑦 ) ) ∈ ℂ ) |
| 14 | 12 13 | mulcld | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝐵 · ( cos ‘ ( 𝐵 · 𝑦 ) ) ) ∈ ℂ ) |
| 15 | 14 | adantll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℂ ) → ( 𝐵 · ( cos ‘ ( 𝐵 · 𝑦 ) ) ) ∈ ℂ ) |
| 16 | dvsinax | ⊢ ( 𝐵 ∈ ℂ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐵 · 𝑦 ) ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝐵 · ( cos ‘ ( 𝐵 · 𝑦 ) ) ) ) ) | |
| 17 | 16 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐵 · 𝑦 ) ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝐵 · ( cos ‘ ( 𝐵 · 𝑦 ) ) ) ) ) |
| 18 | 2 3 4 8 11 15 17 | dvmptmul | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · ( sin ‘ ( 𝐵 · 𝑦 ) ) ) ) ) = ( 𝑦 ∈ ℂ ↦ ( ( 0 · ( sin ‘ ( 𝐵 · 𝑦 ) ) ) + ( ( 𝐵 · ( cos ‘ ( 𝐵 · 𝑦 ) ) ) · 𝐴 ) ) ) ) |
| 19 | 11 | mul02d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℂ ) → ( 0 · ( sin ‘ ( 𝐵 · 𝑦 ) ) ) = 0 ) |
| 20 | 12 | adantll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℂ ) → 𝐵 ∈ ℂ ) |
| 21 | 13 | adantll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℂ ) → ( cos ‘ ( 𝐵 · 𝑦 ) ) ∈ ℂ ) |
| 22 | 20 21 3 | mul32d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℂ ) → ( ( 𝐵 · ( cos ‘ ( 𝐵 · 𝑦 ) ) ) · 𝐴 ) = ( ( 𝐵 · 𝐴 ) · ( cos ‘ ( 𝐵 · 𝑦 ) ) ) ) |
| 23 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 24 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 25 | 23 24 | mulcomd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 · 𝐴 ) = ( 𝐴 · 𝐵 ) ) |
| 26 | 25 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℂ ) → ( 𝐵 · 𝐴 ) = ( 𝐴 · 𝐵 ) ) |
| 27 | 26 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℂ ) → ( ( 𝐵 · 𝐴 ) · ( cos ‘ ( 𝐵 · 𝑦 ) ) ) = ( ( 𝐴 · 𝐵 ) · ( cos ‘ ( 𝐵 · 𝑦 ) ) ) ) |
| 28 | 22 27 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℂ ) → ( ( 𝐵 · ( cos ‘ ( 𝐵 · 𝑦 ) ) ) · 𝐴 ) = ( ( 𝐴 · 𝐵 ) · ( cos ‘ ( 𝐵 · 𝑦 ) ) ) ) |
| 29 | 19 28 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℂ ) → ( ( 0 · ( sin ‘ ( 𝐵 · 𝑦 ) ) ) + ( ( 𝐵 · ( cos ‘ ( 𝐵 · 𝑦 ) ) ) · 𝐴 ) ) = ( 0 + ( ( 𝐴 · 𝐵 ) · ( cos ‘ ( 𝐵 · 𝑦 ) ) ) ) ) |
| 30 | 3 20 | mulcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℂ ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
| 31 | 30 21 | mulcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) · ( cos ‘ ( 𝐵 · 𝑦 ) ) ) ∈ ℂ ) |
| 32 | 31 | addlidd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℂ ) → ( 0 + ( ( 𝐴 · 𝐵 ) · ( cos ‘ ( 𝐵 · 𝑦 ) ) ) ) = ( ( 𝐴 · 𝐵 ) · ( cos ‘ ( 𝐵 · 𝑦 ) ) ) ) |
| 33 | 29 32 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℂ ) → ( ( 0 · ( sin ‘ ( 𝐵 · 𝑦 ) ) ) + ( ( 𝐵 · ( cos ‘ ( 𝐵 · 𝑦 ) ) ) · 𝐴 ) ) = ( ( 𝐴 · 𝐵 ) · ( cos ‘ ( 𝐵 · 𝑦 ) ) ) ) |
| 34 | 33 | mpteq2dva | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝑦 ∈ ℂ ↦ ( ( 0 · ( sin ‘ ( 𝐵 · 𝑦 ) ) ) + ( ( 𝐵 · ( cos ‘ ( 𝐵 · 𝑦 ) ) ) · 𝐴 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 · 𝐵 ) · ( cos ‘ ( 𝐵 · 𝑦 ) ) ) ) ) |
| 35 | 18 34 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · ( sin ‘ ( 𝐵 · 𝑦 ) ) ) ) ) = ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 · 𝐵 ) · ( cos ‘ ( 𝐵 · 𝑦 ) ) ) ) ) |