This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complex number A that is not real, has a distance from the reals that is strictly larger than 0 . (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dstregt0.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( ℂ ∖ ℝ ) ) | |
| Assertion | dstregt0 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ ℝ 𝑥 < ( abs ‘ ( 𝐴 − 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dstregt0.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( ℂ ∖ ℝ ) ) | |
| 2 | 1 | eldifad | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 3 | 2 | imcld | ⊢ ( 𝜑 → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 4 | 3 | recnd | ⊢ ( 𝜑 → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 5 | 1 | eldifbd | ⊢ ( 𝜑 → ¬ 𝐴 ∈ ℝ ) |
| 6 | reim0b | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) | |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |
| 8 | 5 7 | mtbid | ⊢ ( 𝜑 → ¬ ( ℑ ‘ 𝐴 ) = 0 ) |
| 9 | 8 | neqned | ⊢ ( 𝜑 → ( ℑ ‘ 𝐴 ) ≠ 0 ) |
| 10 | 4 9 | absrpcld | ⊢ ( 𝜑 → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ ℝ+ ) |
| 11 | 10 | rphalfcld | ⊢ ( 𝜑 → ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) ∈ ℝ+ ) |
| 12 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
| 13 | recn | ⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
| 15 | 12 14 | imsubd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ℑ ‘ ( 𝐴 − 𝑦 ) ) = ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝑦 ) ) ) |
| 16 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) | |
| 17 | 16 | reim0d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ℑ ‘ 𝑦 ) = 0 ) |
| 18 | 17 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝑦 ) ) = ( ( ℑ ‘ 𝐴 ) − 0 ) ) |
| 19 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 20 | 19 | subid1d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( ℑ ‘ 𝐴 ) − 0 ) = ( ℑ ‘ 𝐴 ) ) |
| 21 | 15 18 20 | 3eqtrrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ℑ ‘ 𝐴 ) = ( ℑ ‘ ( 𝐴 − 𝑦 ) ) ) |
| 22 | 21 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( abs ‘ ( ℑ ‘ 𝐴 ) ) = ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝑦 ) ) ) ) |
| 23 | 22 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) = ( ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝑦 ) ) ) / 2 ) ) |
| 24 | 21 19 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ℑ ‘ ( 𝐴 − 𝑦 ) ) ∈ ℂ ) |
| 25 | 24 | abscld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝑦 ) ) ) ∈ ℝ ) |
| 26 | 25 | rehalfcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝑦 ) ) ) / 2 ) ∈ ℝ ) |
| 27 | 12 14 | subcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐴 − 𝑦 ) ∈ ℂ ) |
| 28 | 27 | abscld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( abs ‘ ( 𝐴 − 𝑦 ) ) ∈ ℝ ) |
| 29 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ℑ ‘ 𝐴 ) ≠ 0 ) |
| 30 | 21 29 | eqnetrrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ℑ ‘ ( 𝐴 − 𝑦 ) ) ≠ 0 ) |
| 31 | 24 30 | absrpcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝑦 ) ) ) ∈ ℝ+ ) |
| 32 | rphalflt | ⊢ ( ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝑦 ) ) ) ∈ ℝ+ → ( ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝑦 ) ) ) / 2 ) < ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝑦 ) ) ) ) | |
| 33 | 31 32 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝑦 ) ) ) / 2 ) < ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝑦 ) ) ) ) |
| 34 | absimle | ⊢ ( ( 𝐴 − 𝑦 ) ∈ ℂ → ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝑦 ) ) ) ≤ ( abs ‘ ( 𝐴 − 𝑦 ) ) ) | |
| 35 | 27 34 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝑦 ) ) ) ≤ ( abs ‘ ( 𝐴 − 𝑦 ) ) ) |
| 36 | 26 25 28 33 35 | ltletrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝑦 ) ) ) / 2 ) < ( abs ‘ ( 𝐴 − 𝑦 ) ) ) |
| 37 | 23 36 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) < ( abs ‘ ( 𝐴 − 𝑦 ) ) ) |
| 38 | 37 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ℝ ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) < ( abs ‘ ( 𝐴 − 𝑦 ) ) ) |
| 39 | breq1 | ⊢ ( 𝑥 = ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) → ( 𝑥 < ( abs ‘ ( 𝐴 − 𝑦 ) ) ↔ ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) < ( abs ‘ ( 𝐴 − 𝑦 ) ) ) ) | |
| 40 | 39 | ralbidv | ⊢ ( 𝑥 = ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) → ( ∀ 𝑦 ∈ ℝ 𝑥 < ( abs ‘ ( 𝐴 − 𝑦 ) ) ↔ ∀ 𝑦 ∈ ℝ ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) < ( abs ‘ ( 𝐴 − 𝑦 ) ) ) ) |
| 41 | 40 | rspcev | ⊢ ( ( ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) ∈ ℝ+ ∧ ∀ 𝑦 ∈ ℝ ( ( abs ‘ ( ℑ ‘ 𝐴 ) ) / 2 ) < ( abs ‘ ( 𝐴 − 𝑦 ) ) ) → ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ ℝ 𝑥 < ( abs ‘ ( 𝐴 − 𝑦 ) ) ) |
| 42 | 11 38 41 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ ℝ 𝑥 < ( abs ‘ ( 𝐴 − 𝑦 ) ) ) |