This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subadd4b.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| subadd4b.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| subadd4b.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| subadd4b.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) | ||
| Assertion | subadd4b | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) + ( 𝐶 − 𝐷 ) ) = ( ( 𝐴 − 𝐷 ) + ( 𝐶 − 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subadd4b.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | subadd4b.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | subadd4b.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 4 | subadd4b.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) | |
| 5 | 1 2 4 3 | subadd4d | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) − ( 𝐷 − 𝐶 ) ) = ( ( 𝐴 + 𝐶 ) − ( 𝐵 + 𝐷 ) ) ) |
| 6 | 1 2 | subcld | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
| 7 | 6 4 3 | subsub2d | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) − ( 𝐷 − 𝐶 ) ) = ( ( 𝐴 − 𝐵 ) + ( 𝐶 − 𝐷 ) ) ) |
| 8 | 2 4 | addcomd | ⊢ ( 𝜑 → ( 𝐵 + 𝐷 ) = ( 𝐷 + 𝐵 ) ) |
| 9 | 8 | oveq2d | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐶 ) − ( 𝐵 + 𝐷 ) ) = ( ( 𝐴 + 𝐶 ) − ( 𝐷 + 𝐵 ) ) ) |
| 10 | 1 3 4 2 | addsub4d | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐶 ) − ( 𝐷 + 𝐵 ) ) = ( ( 𝐴 − 𝐷 ) + ( 𝐶 − 𝐵 ) ) ) |
| 11 | 9 10 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐶 ) − ( 𝐵 + 𝐷 ) ) = ( ( 𝐴 − 𝐷 ) + ( 𝐶 − 𝐵 ) ) ) |
| 12 | 5 7 11 | 3eqtr3d | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) + ( 𝐶 − 𝐷 ) ) = ( ( 𝐴 − 𝐷 ) + ( 𝐶 − 𝐵 ) ) ) |