This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element is zero iff its product with a nonzero element is zero. (Contributed by NM, 8-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drngmuleq0.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| drngmuleq0.o | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| drngmuleq0.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| drngmuleq0.r | ⊢ ( 𝜑 → 𝑅 ∈ DivRing ) | ||
| drngmuleq0.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| drngmuleq0.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| drngmuleq0.e | ⊢ ( 𝜑 → 𝑌 ≠ 0 ) | ||
| Assertion | drngmuleq0 | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = 0 ↔ 𝑋 = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngmuleq0.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | drngmuleq0.o | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | drngmuleq0.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | drngmuleq0.r | ⊢ ( 𝜑 → 𝑅 ∈ DivRing ) | |
| 5 | drngmuleq0.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | drngmuleq0.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | drngmuleq0.e | ⊢ ( 𝜑 → 𝑌 ≠ 0 ) | |
| 8 | 1 2 3 4 5 6 | drngmul0or | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = 0 ↔ ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) ) |
| 9 | df-ne | ⊢ ( 𝑌 ≠ 0 ↔ ¬ 𝑌 = 0 ) | |
| 10 | orel2 | ⊢ ( ¬ 𝑌 = 0 → ( ( 𝑋 = 0 ∨ 𝑌 = 0 ) → 𝑋 = 0 ) ) | |
| 11 | orc | ⊢ ( 𝑋 = 0 → ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) | |
| 12 | 10 11 | impbid1 | ⊢ ( ¬ 𝑌 = 0 → ( ( 𝑋 = 0 ∨ 𝑌 = 0 ) ↔ 𝑋 = 0 ) ) |
| 13 | 9 12 | sylbi | ⊢ ( 𝑌 ≠ 0 → ( ( 𝑋 = 0 ∨ 𝑌 = 0 ) ↔ 𝑋 = 0 ) ) |
| 14 | 7 13 | syl | ⊢ ( 𝜑 → ( ( 𝑋 = 0 ∨ 𝑌 = 0 ) ↔ 𝑋 = 0 ) ) |
| 15 | 8 14 | bitrd | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = 0 ↔ 𝑋 = 0 ) ) |