This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element is zero iff its product with a nonzero element is zero. (Contributed by NM, 8-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drngmuleq0.b | ||
| drngmuleq0.o | |||
| drngmuleq0.t | |||
| drngmuleq0.r | |||
| drngmuleq0.x | |||
| drngmuleq0.y | |||
| drngmuleq0.e | |||
| Assertion | drngmuleq0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngmuleq0.b | ||
| 2 | drngmuleq0.o | ||
| 3 | drngmuleq0.t | ||
| 4 | drngmuleq0.r | ||
| 5 | drngmuleq0.x | ||
| 6 | drngmuleq0.y | ||
| 7 | drngmuleq0.e | ||
| 8 | 1 2 3 4 5 6 | drngmul0or | |
| 9 | df-ne | ||
| 10 | orel2 | ||
| 11 | orc | ||
| 12 | 10 11 | impbid1 | |
| 13 | 9 12 | sylbi | |
| 14 | 7 13 | syl | |
| 15 | 8 14 | bitrd |