This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element is zero iff its product with a nonzero element is zero. (Contributed by NM, 8-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drngmuleq0.b | |- B = ( Base ` R ) |
|
| drngmuleq0.o | |- .0. = ( 0g ` R ) |
||
| drngmuleq0.t | |- .x. = ( .r ` R ) |
||
| drngmuleq0.r | |- ( ph -> R e. DivRing ) |
||
| drngmuleq0.x | |- ( ph -> X e. B ) |
||
| drngmuleq0.y | |- ( ph -> Y e. B ) |
||
| drngmuleq0.e | |- ( ph -> Y =/= .0. ) |
||
| Assertion | drngmuleq0 | |- ( ph -> ( ( X .x. Y ) = .0. <-> X = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngmuleq0.b | |- B = ( Base ` R ) |
|
| 2 | drngmuleq0.o | |- .0. = ( 0g ` R ) |
|
| 3 | drngmuleq0.t | |- .x. = ( .r ` R ) |
|
| 4 | drngmuleq0.r | |- ( ph -> R e. DivRing ) |
|
| 5 | drngmuleq0.x | |- ( ph -> X e. B ) |
|
| 6 | drngmuleq0.y | |- ( ph -> Y e. B ) |
|
| 7 | drngmuleq0.e | |- ( ph -> Y =/= .0. ) |
|
| 8 | 1 2 3 4 5 6 | drngmul0or | |- ( ph -> ( ( X .x. Y ) = .0. <-> ( X = .0. \/ Y = .0. ) ) ) |
| 9 | df-ne | |- ( Y =/= .0. <-> -. Y = .0. ) |
|
| 10 | orel2 | |- ( -. Y = .0. -> ( ( X = .0. \/ Y = .0. ) -> X = .0. ) ) |
|
| 11 | orc | |- ( X = .0. -> ( X = .0. \/ Y = .0. ) ) |
|
| 12 | 10 11 | impbid1 | |- ( -. Y = .0. -> ( ( X = .0. \/ Y = .0. ) <-> X = .0. ) ) |
| 13 | 9 12 | sylbi | |- ( Y =/= .0. -> ( ( X = .0. \/ Y = .0. ) <-> X = .0. ) ) |
| 14 | 7 13 | syl | |- ( ph -> ( ( X = .0. \/ Y = .0. ) <-> X = .0. ) ) |
| 15 | 8 14 | bitrd | |- ( ph -> ( ( X .x. Y ) = .0. <-> X = .0. ) ) |