This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of the multiplicative inverse in a division ring. ( recid2d analog). (Contributed by SN, 14-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drnginvrld.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| drnginvrld.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| drnginvrld.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| drnginvrld.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| drnginvrld.i | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | ||
| drnginvrld.r | ⊢ ( 𝜑 → 𝑅 ∈ DivRing ) | ||
| drnginvrld.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| drnginvrld.1 | ⊢ ( 𝜑 → 𝑋 ≠ 0 ) | ||
| Assertion | drnginvrld | ⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝑋 ) · 𝑋 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drnginvrld.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | drnginvrld.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | drnginvrld.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | drnginvrld.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 5 | drnginvrld.i | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | |
| 6 | drnginvrld.r | ⊢ ( 𝜑 → 𝑅 ∈ DivRing ) | |
| 7 | drnginvrld.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 8 | drnginvrld.1 | ⊢ ( 𝜑 → 𝑋 ≠ 0 ) | |
| 9 | 1 2 3 4 5 | drnginvrl | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( ( 𝐼 ‘ 𝑋 ) · 𝑋 ) = 1 ) |
| 10 | 6 7 8 9 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝑋 ) · 𝑋 ) = 1 ) |