This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of Monk1 p. 43. (Contributed by NM, 31-Jul-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dff13f.1 | ⊢ Ⅎ 𝑥 𝐹 | |
| dff13f.2 | ⊢ Ⅎ 𝑦 𝐹 | ||
| Assertion | dff13f | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff13f.1 | ⊢ Ⅎ 𝑥 𝐹 | |
| 2 | dff13f.2 | ⊢ Ⅎ 𝑦 𝐹 | |
| 3 | dff13 | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑣 ) → 𝑤 = 𝑣 ) ) ) | |
| 4 | nfcv | ⊢ Ⅎ 𝑦 𝑤 | |
| 5 | 2 4 | nffv | ⊢ Ⅎ 𝑦 ( 𝐹 ‘ 𝑤 ) |
| 6 | nfcv | ⊢ Ⅎ 𝑦 𝑣 | |
| 7 | 2 6 | nffv | ⊢ Ⅎ 𝑦 ( 𝐹 ‘ 𝑣 ) |
| 8 | 5 7 | nfeq | ⊢ Ⅎ 𝑦 ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑣 ) |
| 9 | nfv | ⊢ Ⅎ 𝑦 𝑤 = 𝑣 | |
| 10 | 8 9 | nfim | ⊢ Ⅎ 𝑦 ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑣 ) → 𝑤 = 𝑣 ) |
| 11 | nfv | ⊢ Ⅎ 𝑣 ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑦 ) → 𝑤 = 𝑦 ) | |
| 12 | fveq2 | ⊢ ( 𝑣 = 𝑦 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 13 | 12 | eqeq2d | ⊢ ( 𝑣 = 𝑦 → ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑣 ) ↔ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑦 ) ) ) |
| 14 | equequ2 | ⊢ ( 𝑣 = 𝑦 → ( 𝑤 = 𝑣 ↔ 𝑤 = 𝑦 ) ) | |
| 15 | 13 14 | imbi12d | ⊢ ( 𝑣 = 𝑦 → ( ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑣 ) → 𝑤 = 𝑣 ) ↔ ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑦 ) → 𝑤 = 𝑦 ) ) ) |
| 16 | 10 11 15 | cbvralw | ⊢ ( ∀ 𝑣 ∈ 𝐴 ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑣 ) → 𝑤 = 𝑣 ) ↔ ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑦 ) → 𝑤 = 𝑦 ) ) |
| 17 | 16 | ralbii | ⊢ ( ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑣 ) → 𝑤 = 𝑣 ) ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑦 ) → 𝑤 = 𝑦 ) ) |
| 18 | nfcv | ⊢ Ⅎ 𝑥 𝐴 | |
| 19 | nfcv | ⊢ Ⅎ 𝑥 𝑤 | |
| 20 | 1 19 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑤 ) |
| 21 | nfcv | ⊢ Ⅎ 𝑥 𝑦 | |
| 22 | 1 21 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) |
| 23 | 20 22 | nfeq | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑦 ) |
| 24 | nfv | ⊢ Ⅎ 𝑥 𝑤 = 𝑦 | |
| 25 | 23 24 | nfim | ⊢ Ⅎ 𝑥 ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑦 ) → 𝑤 = 𝑦 ) |
| 26 | 18 25 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑦 ) → 𝑤 = 𝑦 ) |
| 27 | nfv | ⊢ Ⅎ 𝑤 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) | |
| 28 | fveqeq2 | ⊢ ( 𝑤 = 𝑥 → ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) | |
| 29 | equequ1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 = 𝑦 ↔ 𝑥 = 𝑦 ) ) | |
| 30 | 28 29 | imbi12d | ⊢ ( 𝑤 = 𝑥 → ( ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑦 ) → 𝑤 = 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 31 | 30 | ralbidv | ⊢ ( 𝑤 = 𝑥 → ( ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑦 ) → 𝑤 = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 32 | 26 27 31 | cbvralw | ⊢ ( ∀ 𝑤 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑦 ) → 𝑤 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 33 | 17 32 | bitri | ⊢ ( ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑣 ) → 𝑤 = 𝑣 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 34 | 33 | anbi2i | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑣 ) → 𝑤 = 𝑣 ) ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 35 | 3 34 | bitri | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |