This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A single axiom for Boolean algebra known as DN_1. See McCune, Veroff, Fitelson, Harris, Feist, Wos,Short single axioms for Boolean algebra, Journal of Automated Reasoning, 29(1):1--16, 2002. ( https://www.cs.unm.edu/~mccune/papers/basax/v12.pdf ). (Contributed by Jeff Hankins, 3-Jul-2009) (Proof shortened by Andrew Salmon, 13-May-2011) (Proof shortened by Wolf Lammen, 6-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dn1 | ⊢ ( ¬ ( ¬ ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ∨ ¬ ( 𝜑 ∨ ¬ ( ¬ 𝜒 ∨ ¬ ( 𝜒 ∨ 𝜃 ) ) ) ) ↔ 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.45 | ⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → ¬ 𝜑 ) | |
| 2 | imnan | ⊢ ( ( ¬ ( 𝜑 ∨ 𝜓 ) → ¬ 𝜑 ) ↔ ¬ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝜑 ) ) | |
| 3 | 1 2 | mpbi | ⊢ ¬ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝜑 ) |
| 4 | 3 | biorfri | ⊢ ( 𝜒 ↔ ( 𝜒 ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝜑 ) ) ) |
| 5 | orcom | ⊢ ( ( 𝜒 ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝜑 ) ) ↔ ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝜑 ) ∨ 𝜒 ) ) | |
| 6 | ordir | ⊢ ( ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝜑 ) ∨ 𝜒 ) ↔ ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜒 ) ) ) | |
| 7 | 4 5 6 | 3bitri | ⊢ ( 𝜒 ↔ ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜒 ) ) ) |
| 8 | pm4.45 | ⊢ ( 𝜒 ↔ ( 𝜒 ∧ ( 𝜒 ∨ 𝜃 ) ) ) | |
| 9 | anor | ⊢ ( ( 𝜒 ∧ ( 𝜒 ∨ 𝜃 ) ) ↔ ¬ ( ¬ 𝜒 ∨ ¬ ( 𝜒 ∨ 𝜃 ) ) ) | |
| 10 | 8 9 | bitri | ⊢ ( 𝜒 ↔ ¬ ( ¬ 𝜒 ∨ ¬ ( 𝜒 ∨ 𝜃 ) ) ) |
| 11 | 10 | orbi2i | ⊢ ( ( 𝜑 ∨ 𝜒 ) ↔ ( 𝜑 ∨ ¬ ( ¬ 𝜒 ∨ ¬ ( 𝜒 ∨ 𝜃 ) ) ) ) |
| 12 | 11 | anbi2i | ⊢ ( ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜒 ) ) ↔ ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ∧ ( 𝜑 ∨ ¬ ( ¬ 𝜒 ∨ ¬ ( 𝜒 ∨ 𝜃 ) ) ) ) ) |
| 13 | anor | ⊢ ( ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ∧ ( 𝜑 ∨ ¬ ( ¬ 𝜒 ∨ ¬ ( 𝜒 ∨ 𝜃 ) ) ) ) ↔ ¬ ( ¬ ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ∨ ¬ ( 𝜑 ∨ ¬ ( ¬ 𝜒 ∨ ¬ ( 𝜒 ∨ 𝜃 ) ) ) ) ) | |
| 14 | 7 12 13 | 3bitrri | ⊢ ( ¬ ( ¬ ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ∨ ¬ ( 𝜑 ∨ ¬ ( ¬ 𝜒 ∨ ¬ ( 𝜒 ∨ 𝜃 ) ) ) ) ↔ 𝜒 ) |