This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A single axiom for Boolean algebra known as DN_1. See McCune, Veroff, Fitelson, Harris, Feist, Wos,Short single axioms for Boolean algebra, Journal of Automated Reasoning, 29(1):1--16, 2002. ( https://www.cs.unm.edu/~mccune/papers/basax/v12.pdf ). (Contributed by Jeff Hankins, 3-Jul-2009) (Proof shortened by Andrew Salmon, 13-May-2011) (Proof shortened by Wolf Lammen, 6-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dn1 | |- ( -. ( -. ( -. ( ph \/ ps ) \/ ch ) \/ -. ( ph \/ -. ( -. ch \/ -. ( ch \/ th ) ) ) ) <-> ch ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.45 | |- ( -. ( ph \/ ps ) -> -. ph ) |
|
| 2 | imnan | |- ( ( -. ( ph \/ ps ) -> -. ph ) <-> -. ( -. ( ph \/ ps ) /\ ph ) ) |
|
| 3 | 1 2 | mpbi | |- -. ( -. ( ph \/ ps ) /\ ph ) |
| 4 | 3 | biorfri | |- ( ch <-> ( ch \/ ( -. ( ph \/ ps ) /\ ph ) ) ) |
| 5 | orcom | |- ( ( ch \/ ( -. ( ph \/ ps ) /\ ph ) ) <-> ( ( -. ( ph \/ ps ) /\ ph ) \/ ch ) ) |
|
| 6 | ordir | |- ( ( ( -. ( ph \/ ps ) /\ ph ) \/ ch ) <-> ( ( -. ( ph \/ ps ) \/ ch ) /\ ( ph \/ ch ) ) ) |
|
| 7 | 4 5 6 | 3bitri | |- ( ch <-> ( ( -. ( ph \/ ps ) \/ ch ) /\ ( ph \/ ch ) ) ) |
| 8 | pm4.45 | |- ( ch <-> ( ch /\ ( ch \/ th ) ) ) |
|
| 9 | anor | |- ( ( ch /\ ( ch \/ th ) ) <-> -. ( -. ch \/ -. ( ch \/ th ) ) ) |
|
| 10 | 8 9 | bitri | |- ( ch <-> -. ( -. ch \/ -. ( ch \/ th ) ) ) |
| 11 | 10 | orbi2i | |- ( ( ph \/ ch ) <-> ( ph \/ -. ( -. ch \/ -. ( ch \/ th ) ) ) ) |
| 12 | 11 | anbi2i | |- ( ( ( -. ( ph \/ ps ) \/ ch ) /\ ( ph \/ ch ) ) <-> ( ( -. ( ph \/ ps ) \/ ch ) /\ ( ph \/ -. ( -. ch \/ -. ( ch \/ th ) ) ) ) ) |
| 13 | anor | |- ( ( ( -. ( ph \/ ps ) \/ ch ) /\ ( ph \/ -. ( -. ch \/ -. ( ch \/ th ) ) ) ) <-> -. ( -. ( -. ( ph \/ ps ) \/ ch ) \/ -. ( ph \/ -. ( -. ch \/ -. ( ch \/ th ) ) ) ) ) |
|
| 14 | 7 12 13 | 3bitrri | |- ( -. ( -. ( -. ( ph \/ ps ) \/ ch ) \/ -. ( ph \/ -. ( -. ch \/ -. ( ch \/ th ) ) ) ) <-> ch ) |