This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain of a composition. (Contributed by NM, 28-May-1998) (Proof shortened by Andrew Salmon, 27-Aug-2011) Avoid ax-11 . (Revised by BTernaryTau, 23-Jun-2025) Avoid ax-10 and ax-12 . (Revised by TM, 31-Dec-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmcosseq | |- ( ran B C_ dom A -> dom ( A o. B ) = dom B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmcoss | |- dom ( A o. B ) C_ dom B |
|
| 2 | 1 | a1i | |- ( ran B C_ dom A -> dom ( A o. B ) C_ dom B ) |
| 3 | ssel | |- ( ran B C_ dom A -> ( y e. ran B -> y e. dom A ) ) |
|
| 4 | vex | |- y e. _V |
|
| 5 | 4 | elrn | |- ( y e. ran B <-> E. x x B y ) |
| 6 | 4 | eldm | |- ( y e. dom A <-> E. z y A z ) |
| 7 | 5 6 | imbi12i | |- ( ( y e. ran B -> y e. dom A ) <-> ( E. x x B y -> E. z y A z ) ) |
| 8 | breq1 | |- ( x = z -> ( x B y <-> z B y ) ) |
|
| 9 | 8 | 19.8aw | |- ( x B y -> E. x x B y ) |
| 10 | 9 | imim1i | |- ( ( E. x x B y -> E. z y A z ) -> ( x B y -> E. z y A z ) ) |
| 11 | pm3.2 | |- ( x B y -> ( y A z -> ( x B y /\ y A z ) ) ) |
|
| 12 | 11 | eximdv | |- ( x B y -> ( E. z y A z -> E. z ( x B y /\ y A z ) ) ) |
| 13 | 10 12 | sylcom | |- ( ( E. x x B y -> E. z y A z ) -> ( x B y -> E. z ( x B y /\ y A z ) ) ) |
| 14 | 7 13 | sylbi | |- ( ( y e. ran B -> y e. dom A ) -> ( x B y -> E. z ( x B y /\ y A z ) ) ) |
| 15 | 3 14 | syl | |- ( ran B C_ dom A -> ( x B y -> E. z ( x B y /\ y A z ) ) ) |
| 16 | 15 | eximdv | |- ( ran B C_ dom A -> ( E. y x B y -> E. y E. z ( x B y /\ y A z ) ) ) |
| 17 | breq2 | |- ( y = w -> ( x B y <-> x B w ) ) |
|
| 18 | breq1 | |- ( y = w -> ( y A z <-> w A z ) ) |
|
| 19 | 17 18 | anbi12d | |- ( y = w -> ( ( x B y /\ y A z ) <-> ( x B w /\ w A z ) ) ) |
| 20 | 19 | excomimw | |- ( E. y E. z ( x B y /\ y A z ) -> E. z E. y ( x B y /\ y A z ) ) |
| 21 | 16 20 | syl6 | |- ( ran B C_ dom A -> ( E. y x B y -> E. z E. y ( x B y /\ y A z ) ) ) |
| 22 | vex | |- x e. _V |
|
| 23 | vex | |- z e. _V |
|
| 24 | 22 23 | opelco | |- ( <. x , z >. e. ( A o. B ) <-> E. y ( x B y /\ y A z ) ) |
| 25 | 24 | exbii | |- ( E. z <. x , z >. e. ( A o. B ) <-> E. z E. y ( x B y /\ y A z ) ) |
| 26 | 21 25 | imbitrrdi | |- ( ran B C_ dom A -> ( E. y x B y -> E. z <. x , z >. e. ( A o. B ) ) ) |
| 27 | 22 | eldm | |- ( x e. dom B <-> E. y x B y ) |
| 28 | 22 | eldm2 | |- ( x e. dom ( A o. B ) <-> E. z <. x , z >. e. ( A o. B ) ) |
| 29 | 26 27 28 | 3imtr4g | |- ( ran B C_ dom A -> ( x e. dom B -> x e. dom ( A o. B ) ) ) |
| 30 | 29 | ssrdv | |- ( ran B C_ dom A -> dom B C_ dom ( A o. B ) ) |
| 31 | 2 30 | eqssd | |- ( ran B C_ dom A -> dom ( A o. B ) = dom B ) |