This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain of closure of an operation. (Contributed by NM, 24-Aug-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oprssdm.1 | ⊢ ¬ ∅ ∈ 𝑆 | |
| oprssdm.2 | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 𝐹 𝑦 ) ∈ 𝑆 ) | ||
| Assertion | oprssdm | ⊢ ( 𝑆 × 𝑆 ) ⊆ dom 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oprssdm.1 | ⊢ ¬ ∅ ∈ 𝑆 | |
| 2 | oprssdm.2 | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 𝐹 𝑦 ) ∈ 𝑆 ) | |
| 3 | relxp | ⊢ Rel ( 𝑆 × 𝑆 ) | |
| 4 | opelxp | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑆 × 𝑆 ) ↔ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) | |
| 5 | df-ov | ⊢ ( 𝑥 𝐹 𝑦 ) = ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) | |
| 6 | 5 2 | eqeltrrid | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) ∈ 𝑆 ) |
| 7 | ndmfv | ⊢ ( ¬ 〈 𝑥 , 𝑦 〉 ∈ dom 𝐹 → ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = ∅ ) | |
| 8 | 7 | eleq1d | ⊢ ( ¬ 〈 𝑥 , 𝑦 〉 ∈ dom 𝐹 → ( ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) ∈ 𝑆 ↔ ∅ ∈ 𝑆 ) ) |
| 9 | 1 8 | mtbiri | ⊢ ( ¬ 〈 𝑥 , 𝑦 〉 ∈ dom 𝐹 → ¬ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) ∈ 𝑆 ) |
| 10 | 9 | con4i | ⊢ ( ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) ∈ 𝑆 → 〈 𝑥 , 𝑦 〉 ∈ dom 𝐹 ) |
| 11 | 6 10 | syl | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → 〈 𝑥 , 𝑦 〉 ∈ dom 𝐹 ) |
| 12 | 4 11 | sylbi | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑆 × 𝑆 ) → 〈 𝑥 , 𝑦 〉 ∈ dom 𝐹 ) |
| 13 | 3 12 | relssi | ⊢ ( 𝑆 × 𝑆 ) ⊆ dom 𝐹 |