This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a distributive lattice, meets distribute over joins. (Contributed by Stefan O'Rear, 30-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdlat.b | |- B = ( Base ` K ) |
|
| isdlat.j | |- .\/ = ( join ` K ) |
||
| isdlat.m | |- ./\ = ( meet ` K ) |
||
| Assertion | dlatmjdi | |- ( ( K e. DLat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ ( Y .\/ Z ) ) = ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdlat.b | |- B = ( Base ` K ) |
|
| 2 | isdlat.j | |- .\/ = ( join ` K ) |
|
| 3 | isdlat.m | |- ./\ = ( meet ` K ) |
|
| 4 | 1 2 3 | isdlat | |- ( K e. DLat <-> ( K e. Lat /\ A. x e. B A. y e. B A. z e. B ( x ./\ ( y .\/ z ) ) = ( ( x ./\ y ) .\/ ( x ./\ z ) ) ) ) |
| 5 | 4 | simprbi | |- ( K e. DLat -> A. x e. B A. y e. B A. z e. B ( x ./\ ( y .\/ z ) ) = ( ( x ./\ y ) .\/ ( x ./\ z ) ) ) |
| 6 | oveq1 | |- ( x = X -> ( x ./\ ( y .\/ z ) ) = ( X ./\ ( y .\/ z ) ) ) |
|
| 7 | oveq1 | |- ( x = X -> ( x ./\ y ) = ( X ./\ y ) ) |
|
| 8 | oveq1 | |- ( x = X -> ( x ./\ z ) = ( X ./\ z ) ) |
|
| 9 | 7 8 | oveq12d | |- ( x = X -> ( ( x ./\ y ) .\/ ( x ./\ z ) ) = ( ( X ./\ y ) .\/ ( X ./\ z ) ) ) |
| 10 | 6 9 | eqeq12d | |- ( x = X -> ( ( x ./\ ( y .\/ z ) ) = ( ( x ./\ y ) .\/ ( x ./\ z ) ) <-> ( X ./\ ( y .\/ z ) ) = ( ( X ./\ y ) .\/ ( X ./\ z ) ) ) ) |
| 11 | oveq1 | |- ( y = Y -> ( y .\/ z ) = ( Y .\/ z ) ) |
|
| 12 | 11 | oveq2d | |- ( y = Y -> ( X ./\ ( y .\/ z ) ) = ( X ./\ ( Y .\/ z ) ) ) |
| 13 | oveq2 | |- ( y = Y -> ( X ./\ y ) = ( X ./\ Y ) ) |
|
| 14 | 13 | oveq1d | |- ( y = Y -> ( ( X ./\ y ) .\/ ( X ./\ z ) ) = ( ( X ./\ Y ) .\/ ( X ./\ z ) ) ) |
| 15 | 12 14 | eqeq12d | |- ( y = Y -> ( ( X ./\ ( y .\/ z ) ) = ( ( X ./\ y ) .\/ ( X ./\ z ) ) <-> ( X ./\ ( Y .\/ z ) ) = ( ( X ./\ Y ) .\/ ( X ./\ z ) ) ) ) |
| 16 | oveq2 | |- ( z = Z -> ( Y .\/ z ) = ( Y .\/ Z ) ) |
|
| 17 | 16 | oveq2d | |- ( z = Z -> ( X ./\ ( Y .\/ z ) ) = ( X ./\ ( Y .\/ Z ) ) ) |
| 18 | oveq2 | |- ( z = Z -> ( X ./\ z ) = ( X ./\ Z ) ) |
|
| 19 | 18 | oveq2d | |- ( z = Z -> ( ( X ./\ Y ) .\/ ( X ./\ z ) ) = ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) ) |
| 20 | 17 19 | eqeq12d | |- ( z = Z -> ( ( X ./\ ( Y .\/ z ) ) = ( ( X ./\ Y ) .\/ ( X ./\ z ) ) <-> ( X ./\ ( Y .\/ Z ) ) = ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) ) ) |
| 21 | 10 15 20 | rspc3v | |- ( ( X e. B /\ Y e. B /\ Z e. B ) -> ( A. x e. B A. y e. B A. z e. B ( x ./\ ( y .\/ z ) ) = ( ( x ./\ y ) .\/ ( x ./\ z ) ) -> ( X ./\ ( Y .\/ Z ) ) = ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) ) ) |
| 22 | 5 21 | mpan9 | |- ( ( K e. DLat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ ( Y .\/ Z ) ) = ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) ) |