This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Disjoint unions with disjoint index sets are disjoint. (Contributed by Stefan O'Rear, 21-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djudisj | |- ( ( A i^i B ) = (/) -> ( U_ x e. A ( { x } X. C ) i^i U_ y e. B ( { y } X. D ) ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djussxp | |- U_ x e. A ( { x } X. C ) C_ ( A X. _V ) |
|
| 2 | incom | |- ( ( A X. _V ) i^i U_ y e. B ( { y } X. D ) ) = ( U_ y e. B ( { y } X. D ) i^i ( A X. _V ) ) |
|
| 3 | djussxp | |- U_ y e. B ( { y } X. D ) C_ ( B X. _V ) |
|
| 4 | incom | |- ( ( B X. _V ) i^i ( A X. _V ) ) = ( ( A X. _V ) i^i ( B X. _V ) ) |
|
| 5 | xpdisj1 | |- ( ( A i^i B ) = (/) -> ( ( A X. _V ) i^i ( B X. _V ) ) = (/) ) |
|
| 6 | 4 5 | eqtrid | |- ( ( A i^i B ) = (/) -> ( ( B X. _V ) i^i ( A X. _V ) ) = (/) ) |
| 7 | ssdisj | |- ( ( U_ y e. B ( { y } X. D ) C_ ( B X. _V ) /\ ( ( B X. _V ) i^i ( A X. _V ) ) = (/) ) -> ( U_ y e. B ( { y } X. D ) i^i ( A X. _V ) ) = (/) ) |
|
| 8 | 3 6 7 | sylancr | |- ( ( A i^i B ) = (/) -> ( U_ y e. B ( { y } X. D ) i^i ( A X. _V ) ) = (/) ) |
| 9 | 2 8 | eqtrid | |- ( ( A i^i B ) = (/) -> ( ( A X. _V ) i^i U_ y e. B ( { y } X. D ) ) = (/) ) |
| 10 | ssdisj | |- ( ( U_ x e. A ( { x } X. C ) C_ ( A X. _V ) /\ ( ( A X. _V ) i^i U_ y e. B ( { y } X. D ) ) = (/) ) -> ( U_ x e. A ( { x } X. C ) i^i U_ y e. B ( { y } X. D ) ) = (/) ) |
|
| 11 | 1 9 10 | sylancr | |- ( ( A i^i B ) = (/) -> ( U_ x e. A ( { x } X. C ) i^i U_ y e. B ( { y } X. D ) ) = (/) ) |