This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sequence of reciprocals of real numbers, multiplied by the factor A , converges to zero. (Contributed by Mario Carneiro, 18-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divrcnv | ⊢ ( 𝐴 ∈ ℂ → ( 𝑛 ∈ ℝ+ ↦ ( 𝐴 / 𝑛 ) ) ⇝𝑟 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abscl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) | |
| 2 | rerpdivcl | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 𝑥 ∈ ℝ+ ) → ( ( abs ‘ 𝐴 ) / 𝑥 ) ∈ ℝ ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ( ( abs ‘ 𝐴 ) / 𝑥 ) ∈ ℝ ) |
| 4 | simpll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) → 𝐴 ∈ ℂ ) | |
| 5 | rpcn | ⊢ ( 𝑛 ∈ ℝ+ → 𝑛 ∈ ℂ ) | |
| 6 | 5 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) → 𝑛 ∈ ℂ ) |
| 7 | rpne0 | ⊢ ( 𝑛 ∈ ℝ+ → 𝑛 ≠ 0 ) | |
| 8 | 7 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) → 𝑛 ≠ 0 ) |
| 9 | 4 6 8 | absdivd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) → ( abs ‘ ( 𝐴 / 𝑛 ) ) = ( ( abs ‘ 𝐴 ) / ( abs ‘ 𝑛 ) ) ) |
| 10 | rpre | ⊢ ( 𝑛 ∈ ℝ+ → 𝑛 ∈ ℝ ) | |
| 11 | 10 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) → 𝑛 ∈ ℝ ) |
| 12 | rpge0 | ⊢ ( 𝑛 ∈ ℝ+ → 0 ≤ 𝑛 ) | |
| 13 | 12 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) → 0 ≤ 𝑛 ) |
| 14 | 11 13 | absidd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) → ( abs ‘ 𝑛 ) = 𝑛 ) |
| 15 | 14 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) → ( ( abs ‘ 𝐴 ) / ( abs ‘ 𝑛 ) ) = ( ( abs ‘ 𝐴 ) / 𝑛 ) ) |
| 16 | 9 15 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) → ( abs ‘ ( 𝐴 / 𝑛 ) ) = ( ( abs ‘ 𝐴 ) / 𝑛 ) ) |
| 17 | simprr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) → ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) | |
| 18 | 4 | abscld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 19 | rpre | ⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) | |
| 20 | 19 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) → 𝑥 ∈ ℝ ) |
| 21 | rpgt0 | ⊢ ( 𝑥 ∈ ℝ+ → 0 < 𝑥 ) | |
| 22 | 21 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) → 0 < 𝑥 ) |
| 23 | rpgt0 | ⊢ ( 𝑛 ∈ ℝ+ → 0 < 𝑛 ) | |
| 24 | 23 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) → 0 < 𝑛 ) |
| 25 | ltdiv23 | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ∧ ( 𝑛 ∈ ℝ ∧ 0 < 𝑛 ) ) → ( ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ↔ ( ( abs ‘ 𝐴 ) / 𝑛 ) < 𝑥 ) ) | |
| 26 | 18 20 22 11 24 25 | syl122anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) → ( ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ↔ ( ( abs ‘ 𝐴 ) / 𝑛 ) < 𝑥 ) ) |
| 27 | 17 26 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) → ( ( abs ‘ 𝐴 ) / 𝑛 ) < 𝑥 ) |
| 28 | 16 27 | eqbrtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) → ( abs ‘ ( 𝐴 / 𝑛 ) ) < 𝑥 ) |
| 29 | 28 | expr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ℝ+ ) → ( ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 → ( abs ‘ ( 𝐴 / 𝑛 ) ) < 𝑥 ) ) |
| 30 | 29 | ralrimiva | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ∀ 𝑛 ∈ ℝ+ ( ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 → ( abs ‘ ( 𝐴 / 𝑛 ) ) < 𝑥 ) ) |
| 31 | breq1 | ⊢ ( 𝑦 = ( ( abs ‘ 𝐴 ) / 𝑥 ) → ( 𝑦 < 𝑛 ↔ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) | |
| 32 | 31 | rspceaimv | ⊢ ( ( ( ( abs ‘ 𝐴 ) / 𝑥 ) ∈ ℝ ∧ ∀ 𝑛 ∈ ℝ+ ( ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 → ( abs ‘ ( 𝐴 / 𝑛 ) ) < 𝑥 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℝ+ ( 𝑦 < 𝑛 → ( abs ‘ ( 𝐴 / 𝑛 ) ) < 𝑥 ) ) |
| 33 | 3 30 32 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℝ+ ( 𝑦 < 𝑛 → ( abs ‘ ( 𝐴 / 𝑛 ) ) < 𝑥 ) ) |
| 34 | 33 | ralrimiva | ⊢ ( 𝐴 ∈ ℂ → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℝ+ ( 𝑦 < 𝑛 → ( abs ‘ ( 𝐴 / 𝑛 ) ) < 𝑥 ) ) |
| 35 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑛 ∈ ℝ+ ) → 𝐴 ∈ ℂ ) | |
| 36 | 5 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑛 ∈ ℝ+ ) → 𝑛 ∈ ℂ ) |
| 37 | 7 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑛 ∈ ℝ+ ) → 𝑛 ≠ 0 ) |
| 38 | 35 36 37 | divcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑛 ∈ ℝ+ ) → ( 𝐴 / 𝑛 ) ∈ ℂ ) |
| 39 | 38 | ralrimiva | ⊢ ( 𝐴 ∈ ℂ → ∀ 𝑛 ∈ ℝ+ ( 𝐴 / 𝑛 ) ∈ ℂ ) |
| 40 | rpssre | ⊢ ℝ+ ⊆ ℝ | |
| 41 | 40 | a1i | ⊢ ( 𝐴 ∈ ℂ → ℝ+ ⊆ ℝ ) |
| 42 | 39 41 | rlim0lt | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝑛 ∈ ℝ+ ↦ ( 𝐴 / 𝑛 ) ) ⇝𝑟 0 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℝ+ ( 𝑦 < 𝑛 → ( abs ‘ ( 𝐴 / 𝑛 ) ) < 𝑥 ) ) ) |
| 43 | 34 42 | mpbird | ⊢ ( 𝐴 ∈ ℂ → ( 𝑛 ∈ ℝ+ ↦ ( 𝐴 / 𝑛 ) ) ⇝𝑟 0 ) |