This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sequence of reciprocals of real numbers, multiplied by the factor A , converges to zero. (Contributed by Mario Carneiro, 18-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divrcnv | |- ( A e. CC -> ( n e. RR+ |-> ( A / n ) ) ~~>r 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abscl | |- ( A e. CC -> ( abs ` A ) e. RR ) |
|
| 2 | rerpdivcl | |- ( ( ( abs ` A ) e. RR /\ x e. RR+ ) -> ( ( abs ` A ) / x ) e. RR ) |
|
| 3 | 1 2 | sylan | |- ( ( A e. CC /\ x e. RR+ ) -> ( ( abs ` A ) / x ) e. RR ) |
| 4 | simpll | |- ( ( ( A e. CC /\ x e. RR+ ) /\ ( n e. RR+ /\ ( ( abs ` A ) / x ) < n ) ) -> A e. CC ) |
|
| 5 | rpcn | |- ( n e. RR+ -> n e. CC ) |
|
| 6 | 5 | ad2antrl | |- ( ( ( A e. CC /\ x e. RR+ ) /\ ( n e. RR+ /\ ( ( abs ` A ) / x ) < n ) ) -> n e. CC ) |
| 7 | rpne0 | |- ( n e. RR+ -> n =/= 0 ) |
|
| 8 | 7 | ad2antrl | |- ( ( ( A e. CC /\ x e. RR+ ) /\ ( n e. RR+ /\ ( ( abs ` A ) / x ) < n ) ) -> n =/= 0 ) |
| 9 | 4 6 8 | absdivd | |- ( ( ( A e. CC /\ x e. RR+ ) /\ ( n e. RR+ /\ ( ( abs ` A ) / x ) < n ) ) -> ( abs ` ( A / n ) ) = ( ( abs ` A ) / ( abs ` n ) ) ) |
| 10 | rpre | |- ( n e. RR+ -> n e. RR ) |
|
| 11 | 10 | ad2antrl | |- ( ( ( A e. CC /\ x e. RR+ ) /\ ( n e. RR+ /\ ( ( abs ` A ) / x ) < n ) ) -> n e. RR ) |
| 12 | rpge0 | |- ( n e. RR+ -> 0 <_ n ) |
|
| 13 | 12 | ad2antrl | |- ( ( ( A e. CC /\ x e. RR+ ) /\ ( n e. RR+ /\ ( ( abs ` A ) / x ) < n ) ) -> 0 <_ n ) |
| 14 | 11 13 | absidd | |- ( ( ( A e. CC /\ x e. RR+ ) /\ ( n e. RR+ /\ ( ( abs ` A ) / x ) < n ) ) -> ( abs ` n ) = n ) |
| 15 | 14 | oveq2d | |- ( ( ( A e. CC /\ x e. RR+ ) /\ ( n e. RR+ /\ ( ( abs ` A ) / x ) < n ) ) -> ( ( abs ` A ) / ( abs ` n ) ) = ( ( abs ` A ) / n ) ) |
| 16 | 9 15 | eqtrd | |- ( ( ( A e. CC /\ x e. RR+ ) /\ ( n e. RR+ /\ ( ( abs ` A ) / x ) < n ) ) -> ( abs ` ( A / n ) ) = ( ( abs ` A ) / n ) ) |
| 17 | simprr | |- ( ( ( A e. CC /\ x e. RR+ ) /\ ( n e. RR+ /\ ( ( abs ` A ) / x ) < n ) ) -> ( ( abs ` A ) / x ) < n ) |
|
| 18 | 4 | abscld | |- ( ( ( A e. CC /\ x e. RR+ ) /\ ( n e. RR+ /\ ( ( abs ` A ) / x ) < n ) ) -> ( abs ` A ) e. RR ) |
| 19 | rpre | |- ( x e. RR+ -> x e. RR ) |
|
| 20 | 19 | ad2antlr | |- ( ( ( A e. CC /\ x e. RR+ ) /\ ( n e. RR+ /\ ( ( abs ` A ) / x ) < n ) ) -> x e. RR ) |
| 21 | rpgt0 | |- ( x e. RR+ -> 0 < x ) |
|
| 22 | 21 | ad2antlr | |- ( ( ( A e. CC /\ x e. RR+ ) /\ ( n e. RR+ /\ ( ( abs ` A ) / x ) < n ) ) -> 0 < x ) |
| 23 | rpgt0 | |- ( n e. RR+ -> 0 < n ) |
|
| 24 | 23 | ad2antrl | |- ( ( ( A e. CC /\ x e. RR+ ) /\ ( n e. RR+ /\ ( ( abs ` A ) / x ) < n ) ) -> 0 < n ) |
| 25 | ltdiv23 | |- ( ( ( abs ` A ) e. RR /\ ( x e. RR /\ 0 < x ) /\ ( n e. RR /\ 0 < n ) ) -> ( ( ( abs ` A ) / x ) < n <-> ( ( abs ` A ) / n ) < x ) ) |
|
| 26 | 18 20 22 11 24 25 | syl122anc | |- ( ( ( A e. CC /\ x e. RR+ ) /\ ( n e. RR+ /\ ( ( abs ` A ) / x ) < n ) ) -> ( ( ( abs ` A ) / x ) < n <-> ( ( abs ` A ) / n ) < x ) ) |
| 27 | 17 26 | mpbid | |- ( ( ( A e. CC /\ x e. RR+ ) /\ ( n e. RR+ /\ ( ( abs ` A ) / x ) < n ) ) -> ( ( abs ` A ) / n ) < x ) |
| 28 | 16 27 | eqbrtrd | |- ( ( ( A e. CC /\ x e. RR+ ) /\ ( n e. RR+ /\ ( ( abs ` A ) / x ) < n ) ) -> ( abs ` ( A / n ) ) < x ) |
| 29 | 28 | expr | |- ( ( ( A e. CC /\ x e. RR+ ) /\ n e. RR+ ) -> ( ( ( abs ` A ) / x ) < n -> ( abs ` ( A / n ) ) < x ) ) |
| 30 | 29 | ralrimiva | |- ( ( A e. CC /\ x e. RR+ ) -> A. n e. RR+ ( ( ( abs ` A ) / x ) < n -> ( abs ` ( A / n ) ) < x ) ) |
| 31 | breq1 | |- ( y = ( ( abs ` A ) / x ) -> ( y < n <-> ( ( abs ` A ) / x ) < n ) ) |
|
| 32 | 31 | rspceaimv | |- ( ( ( ( abs ` A ) / x ) e. RR /\ A. n e. RR+ ( ( ( abs ` A ) / x ) < n -> ( abs ` ( A / n ) ) < x ) ) -> E. y e. RR A. n e. RR+ ( y < n -> ( abs ` ( A / n ) ) < x ) ) |
| 33 | 3 30 32 | syl2anc | |- ( ( A e. CC /\ x e. RR+ ) -> E. y e. RR A. n e. RR+ ( y < n -> ( abs ` ( A / n ) ) < x ) ) |
| 34 | 33 | ralrimiva | |- ( A e. CC -> A. x e. RR+ E. y e. RR A. n e. RR+ ( y < n -> ( abs ` ( A / n ) ) < x ) ) |
| 35 | simpl | |- ( ( A e. CC /\ n e. RR+ ) -> A e. CC ) |
|
| 36 | 5 | adantl | |- ( ( A e. CC /\ n e. RR+ ) -> n e. CC ) |
| 37 | 7 | adantl | |- ( ( A e. CC /\ n e. RR+ ) -> n =/= 0 ) |
| 38 | 35 36 37 | divcld | |- ( ( A e. CC /\ n e. RR+ ) -> ( A / n ) e. CC ) |
| 39 | 38 | ralrimiva | |- ( A e. CC -> A. n e. RR+ ( A / n ) e. CC ) |
| 40 | rpssre | |- RR+ C_ RR |
|
| 41 | 40 | a1i | |- ( A e. CC -> RR+ C_ RR ) |
| 42 | 39 41 | rlim0lt | |- ( A e. CC -> ( ( n e. RR+ |-> ( A / n ) ) ~~>r 0 <-> A. x e. RR+ E. y e. RR A. n e. RR+ ( y < n -> ( abs ` ( A / n ) ) < x ) ) ) |
| 43 | 34 42 | mpbird | |- ( A e. CC -> ( n e. RR+ |-> ( A / n ) ) ~~>r 0 ) |