This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of divccn as of 6-Apr-2025. (Contributed by Mario Carneiro, 5-May-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | expcnOLD.j | |- J = ( TopOpen ` CCfld ) |
|
| Assertion | divccnOLD | |- ( ( A e. CC /\ A =/= 0 ) -> ( x e. CC |-> ( x / A ) ) e. ( J Cn J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcnOLD.j | |- J = ( TopOpen ` CCfld ) |
|
| 2 | divrec | |- ( ( x e. CC /\ A e. CC /\ A =/= 0 ) -> ( x / A ) = ( x x. ( 1 / A ) ) ) |
|
| 3 | 2 | 3expb | |- ( ( x e. CC /\ ( A e. CC /\ A =/= 0 ) ) -> ( x / A ) = ( x x. ( 1 / A ) ) ) |
| 4 | 3 | ancoms | |- ( ( ( A e. CC /\ A =/= 0 ) /\ x e. CC ) -> ( x / A ) = ( x x. ( 1 / A ) ) ) |
| 5 | 4 | mpteq2dva | |- ( ( A e. CC /\ A =/= 0 ) -> ( x e. CC |-> ( x / A ) ) = ( x e. CC |-> ( x x. ( 1 / A ) ) ) ) |
| 6 | 1 | cnfldtopon | |- J e. ( TopOn ` CC ) |
| 7 | 6 | a1i | |- ( ( A e. CC /\ A =/= 0 ) -> J e. ( TopOn ` CC ) ) |
| 8 | 7 | cnmptid | |- ( ( A e. CC /\ A =/= 0 ) -> ( x e. CC |-> x ) e. ( J Cn J ) ) |
| 9 | reccl | |- ( ( A e. CC /\ A =/= 0 ) -> ( 1 / A ) e. CC ) |
|
| 10 | 7 7 9 | cnmptc | |- ( ( A e. CC /\ A =/= 0 ) -> ( x e. CC |-> ( 1 / A ) ) e. ( J Cn J ) ) |
| 11 | 1 | mulcn | |- x. e. ( ( J tX J ) Cn J ) |
| 12 | 11 | a1i | |- ( ( A e. CC /\ A =/= 0 ) -> x. e. ( ( J tX J ) Cn J ) ) |
| 13 | 7 8 10 12 | cnmpt12f | |- ( ( A e. CC /\ A =/= 0 ) -> ( x e. CC |-> ( x x. ( 1 / A ) ) ) e. ( J Cn J ) ) |
| 14 | 5 13 | eqeltrd | |- ( ( A e. CC /\ A =/= 0 ) -> ( x e. CC |-> ( x / A ) ) e. ( J Cn J ) ) |