This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Swap the order of subtraction in a division. (Contributed by Scott Fenton, 24-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | div2sub | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ≠ 𝐷 ) ) → ( ( 𝐴 − 𝐵 ) / ( 𝐶 − 𝐷 ) ) = ( ( 𝐵 − 𝐴 ) / ( 𝐷 − 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) | |
| 2 | subcl | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝐶 − 𝐷 ) ∈ ℂ ) | |
| 3 | 2 | 3adant3 | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ≠ 𝐷 ) → ( 𝐶 − 𝐷 ) ∈ ℂ ) |
| 4 | subeq0 | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( ( 𝐶 − 𝐷 ) = 0 ↔ 𝐶 = 𝐷 ) ) | |
| 5 | 4 | necon3bid | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( ( 𝐶 − 𝐷 ) ≠ 0 ↔ 𝐶 ≠ 𝐷 ) ) |
| 6 | 5 | biimp3ar | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ≠ 𝐷 ) → ( 𝐶 − 𝐷 ) ≠ 0 ) |
| 7 | 3 6 | jca | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ≠ 𝐷 ) → ( ( 𝐶 − 𝐷 ) ∈ ℂ ∧ ( 𝐶 − 𝐷 ) ≠ 0 ) ) |
| 8 | div2neg | ⊢ ( ( ( 𝐴 − 𝐵 ) ∈ ℂ ∧ ( 𝐶 − 𝐷 ) ∈ ℂ ∧ ( 𝐶 − 𝐷 ) ≠ 0 ) → ( - ( 𝐴 − 𝐵 ) / - ( 𝐶 − 𝐷 ) ) = ( ( 𝐴 − 𝐵 ) / ( 𝐶 − 𝐷 ) ) ) | |
| 9 | 8 | 3expb | ⊢ ( ( ( 𝐴 − 𝐵 ) ∈ ℂ ∧ ( ( 𝐶 − 𝐷 ) ∈ ℂ ∧ ( 𝐶 − 𝐷 ) ≠ 0 ) ) → ( - ( 𝐴 − 𝐵 ) / - ( 𝐶 − 𝐷 ) ) = ( ( 𝐴 − 𝐵 ) / ( 𝐶 − 𝐷 ) ) ) |
| 10 | 1 7 9 | syl2an | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ≠ 𝐷 ) ) → ( - ( 𝐴 − 𝐵 ) / - ( 𝐶 − 𝐷 ) ) = ( ( 𝐴 − 𝐵 ) / ( 𝐶 − 𝐷 ) ) ) |
| 11 | negsubdi2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → - ( 𝐴 − 𝐵 ) = ( 𝐵 − 𝐴 ) ) | |
| 12 | negsubdi2 | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → - ( 𝐶 − 𝐷 ) = ( 𝐷 − 𝐶 ) ) | |
| 13 | 12 | 3adant3 | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ≠ 𝐷 ) → - ( 𝐶 − 𝐷 ) = ( 𝐷 − 𝐶 ) ) |
| 14 | 11 13 | oveqan12d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ≠ 𝐷 ) ) → ( - ( 𝐴 − 𝐵 ) / - ( 𝐶 − 𝐷 ) ) = ( ( 𝐵 − 𝐴 ) / ( 𝐷 − 𝐶 ) ) ) |
| 15 | 10 14 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ≠ 𝐷 ) ) → ( ( 𝐴 − 𝐵 ) / ( 𝐶 − 𝐷 ) ) = ( ( 𝐵 − 𝐴 ) / ( 𝐷 − 𝐶 ) ) ) |