This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Swap subtrahend and minuend inside the numerator and denominator of a fraction. Deduction form of div2sub . (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | div2subd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| div2subd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| div2subd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| div2subd.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) | ||
| div2subd.5 | ⊢ ( 𝜑 → 𝐶 ≠ 𝐷 ) | ||
| Assertion | div2subd | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) / ( 𝐶 − 𝐷 ) ) = ( ( 𝐵 − 𝐴 ) / ( 𝐷 − 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | div2subd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | div2subd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | div2subd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 4 | div2subd.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) | |
| 5 | div2subd.5 | ⊢ ( 𝜑 → 𝐶 ≠ 𝐷 ) | |
| 6 | div2sub | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ≠ 𝐷 ) ) → ( ( 𝐴 − 𝐵 ) / ( 𝐶 − 𝐷 ) ) = ( ( 𝐵 − 𝐴 ) / ( 𝐷 − 𝐶 ) ) ) | |
| 7 | 1 2 3 4 5 6 | syl23anc | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) / ( 𝐶 − 𝐷 ) ) = ( ( 𝐵 − 𝐴 ) / ( 𝐷 − 𝐶 ) ) ) |